

Fundamental Physics @ Low Energies

J. Jaeckel[†]

S. Abel[†], M. Goodsell^{*}, S. Gardiner[†], H. Gies⁰ V. Khoze[†], J. Redondo[×], A. Ringwald^{*}, S. Roy[†] Durham University, *DESY, *MPI Munich, ⁰ITP Jena Where we want to go...

We need... Physics beyond the Standard Model

The Standard Model

	Quarks		Leptons	
	Charge +2/3	Charge -1/3	Charge -1	Charge 0
1. Family	Up u	Down d	Electron e	e-Neutrino v _e
2. Family	Charm c	Strange s	Myon μ	μ-Neutrino v_{μ}
3. Family	Top t	Bottom b	Tau τ	τ -Neutrino v_{τ}
	Gravitation	graviton		
Weak forces		📄 W- und Z-b	osons	
	Electromagnet	ism 🛑 photons	(γ)	
	Strong forces	gluons		

Hints for new Physics

Uglyness of old models

- The Standard Model has many free parameters: O(30)
- Naturalness problems. Finetuning.
 Examples: Higgs mass, θ-angle (strong CP-problem)

A dirty little secret...

 $S = \int d^4x \left[-rac{1}{4} G^{\mu
u} G_{\mu
u} - rac{ heta}{4} G^{\mu
u} ilde{G}_{\mu
u}
ight]$ $+\imath\bar{\psi}D_{\mu}\gamma^{\mu}\psi+\bar{\psi}M\psi$

- The θ -term is CP violating!
- Connected to strong interactions!

Measure electric dipole moment of the neutron!

Neutron electric dipole moment

- University of Durham
- θ would cause neutron EDM Experiment

No neutron electric dipole moment...

 $\begin{aligned} |\vec{d}| &< 3\,10^{-26} e\,cm \\ &= 3\,10^{-13} e\,fm \end{aligned}$

No neutron electric dipole moment...

$$\begin{split} |\vec{d}| &< 3\,10^{-26} e\,cm \\ &= 3\,10^{-13} e\,fm \lll 16\pi^2 e\,fm \end{split}$$

Uglyness of old models

- The Standard Model has many free parameters: O(30)
- Naturalness problems. Finetuning.
 Examples: Higgs mass, θ-angle (strong CP-problem)
- Gravity separate, i.e. not unified.
- (Probably) Breaks down at a finite energy scale
 - Landau poles etc.

Unexplained Stuff

- University of Durham
- Dark Matter (25%)
 (astrophysical + cosmological observations)
- Dark Energy (70%) (astrophysical + cosmological observations)
- Mass Hierarchies (colliders, neutrino exp, etc)
- Small parameters (θ-angle, again) (neutron electric dipole measurements)

- $(g-2)_{\mu}$ deviations from SM prediction
- DAMA anomaly
- · CoGeNT etc.
- PAMELA+Fermi observation
- WMAP observes extra "neutrinos"
- Proton radius in muonic hydrogen

Hints for new Physics Model Building Top-down Bottom-up (theory) (pheno)

Fix problem `here and now'

Go back to drawing board `Start from scratch'

The strong CP problem: Axions

- Introduce new Peccei-Quinn symmetry to solve naturalness problem
- Predict as a consequence a new particle: The Axion (it's a Weakly Interacting Sub-eV Particle) Dark matter candidate Good motivation for axion/WISP experiments

Hints for new Physics Model Building Bottom-up Top-down (theory) (pheno)

Experiments

Exploring fundamental high energy physics... The direct approach: MORE POWER LHC, Tevatron + ILC, CLIC

- Detects most things within energy range
- E.g. may find SUSY particles, WIMPs etc.

- May miss very weakly interacting matter (Axions, WIMPs, WISPs...)
- Current maximal energy few TeV

• Man its DANGEROUS...

0 0

- May miss very weakly interacting matter (Axions, WIMPs, WISPs...)
- Current maximal energy few TeV

• Or much much more horryfying:

NO SIGNAL ABOYE BACKGROUND

Recycling... Complementary approaches

Light shining through walls

Light shining through walls

\cdot Test $P_{\gamma ightarrow X ightarrow \gamma} \lesssim 10^{-20}$

- Enormous precision!
- Study extremely weak couplings!

Photons coming through the wall!

- It could be Axion(-like particle)s!
- Coupling to two photons:

$$\frac{1}{M}a\tilde{F}F\sim\frac{1}{M}a\vec{\mathbf{E}}\cdot\vec{\mathbf{B}}$$

Light Shining Through Walls

- ALPS
- BMV
- Gamme V 25 cm
- LIPPS
- OSQAR

		Calibration diode	Temporary dark room
Laser Box	Tevatron magnet (6m)	Plunger	PMT Box
aser			
		(2m)	
Wa Monitor sensor	rm bore	"wall"	

Small coupling, small mass

Helioscopes

CAST@CERN SUMICO@Tokyo SHIPS@Hamburg

"Light shining through a wall"

Perfect for astronomy in Durham or Hamburg ;-)

Sensitivity

WISPS=Weakly interacting sub-eV particles

• Axions $\gamma \rightarrow \gamma \rightarrow \varphi$ $\chi = B \times B \times B \times Y^*$ γ^*

 Massive hidden photons (without B-field)
 =analog v-oscillations

 Hidden photon + minicharged particle (MCP)

Hidden Photons

LSW already competitive + testing interesting area

Electricity from Dark Matter ;-).

Photon Regeneration

Electricity from Dark Matter ;-).

Photon Regeneration

Searching axion dark matter

High-Q microwave cavity

ADMX: Super sensitive

Opportunity for DESY

- Use Hera magnets ;-).
- Dipoles instead of solenoids
 - → Higher frequencies

Sensitive to higher masses

Hidden photons could be Dark Matter, too

Hints for new Physics Model Building

Hope for light particles?

YES, we can!

Neutrino masses:

 $m_{\nu} \sim \mathrm{meV}$

- Scale of dark energy: $ho_\Lambda \sim ({
 m meV})^4$
- Energy density of the Universe:

 $ho_{\rm today} \sim ({\rm meV})^4$

Hidden Photons

LSW already competitive + testing interesting area Dark energy scale

High Scale Couping Small

Example: Axion coupling

Effective higher dimensional coupling

 $\mathcal{L}_{Int} = -\frac{1}{A}gaF^{\mu\nu}\tilde{F}_{\mu\nu} = -ga\mathbf{E}\cdot\mathbf{B}$

• Small coupling for large axion scale:

Huge Scale >> LHC Energy!

High Scale Small Mass

The axion mass is small, too!

• The axion mass is small, too!

Pseudo-Goldstone Boson!

The axion mass is small, too!

Large Scale but light!

Hints for new Physics Model Building Bottom-up Top-down (theory) (pheno)

Go back to drawing board `Start from scratch' WISPs from String Theory

String theory

- Attempt to unify SM with gravity
- New concept: strings instead of point particles

Axion(-like particles)

String theory: Moduli and Axions

String theory needs Extra Dimensions

Must compactify

 Shape and size deformations correspond to fields: Moduli (WISPs) and Axions Connected to the fundamental scale, here string scale

Axion (like particles): Where are we?

Axion (like particles): Where are we?

Hidden Photons

String theory likes extra gauge groups

Hidden by distance

Hidden by weakness

Hidden Photons, all over the place

Hints for new Physics Model Building Bottom-up (pheno) Top-down (theory) New, cool Experiments

Hidden Photons: Back to Experiment

If you don't believe me... (or in BSM physics)

Atoms Light shining through walls

Atoms shining through walls

Atoms could be used to simulate "LSW"

Tunneling of the 3rd kind...

"Macroscopic" quantum loop Tests effective non-locality of QFT Conclusions

Conclusions

- Good Physics Case for Axions and WISPs
 explore `The Low Energy Frontier'
- Low energy experiments test energy scales much higher than accelerators
 - **Complementary!**
- May provide information on hidden sectors and thereby into the underlying fundamental theory

 Atoms shining through walls demonstrate "big" quantum loops

Discover the Hidden Islands

and all the state of the state