Very-high energy Gamma-ray Astronomy

Very High-Energy Observatories

H.E.S.S.

C.Stegmann

HUB T. Lohse

U HH D.Horns

YIG G. Maier THEO M. Pohl

A

Fermi

M.Ackermann

Sensitivities

VERITAS

Sophisticated trigger system needed to suppress night sky background (120 MHz -> 20 Hz)

VERITAS Physics Result: Crab Pulsar

- remnant of historic supernova observed in 1054 A.D.
- one of the most powerful pulsars: spin-down energy of 4.6 x 10³⁸ erg/s
- Fermi-LAT measures spectral break at ~6 GeV
- MAGIC detected the pulsar at 25 GeV using dedicated hardware (2008)
- VERITAS observations 2007-2010: total exposure of 107 h (standard configuration): emission between 100 and 400 GeV

0.03308471603	s
4.227654×10^{-13}	s/s
3.78×10^{12}	\dot{G}
9.8×10^{5}	G
4.6×10^{38}	ergs/s
1240	yr
1.58×10^{6}	m
	$\begin{array}{c} 0.03308471603 \\ 4.227654 \times 10^{-13} \\ 3.78 \times 10^{12} \\ 9.8 \times 10^5 \\ 4.6 \times 10^{38} \\ 1240 \\ 1.58 \times 10^6 \end{array}$

Gamma-ray emission from pulsars

- magnetic field structure a presently unsolved problem
- > most parts of the magnetosphere: induced electrical field is saturated
- regions of low plasma density (vacuum gaps) are acceleration sites
- maximum electron energy given by balance between acceleration and radiation losses
- > absorption of gamma rays in the magnetosphere
 - magnetic pair production
 - photon-photon pair production

Crab Pulsar > 100 GeV

The VERITAS Collaboration, Science (2011)

Crab Pulsar > 100 GeV

Crab Pulsar > 100 GeV

Testing Lorentz Invariance

- > most (all?) quantum theories of gravity introduce fluctuations at the Planck scale (E_P≈10¹⁹ GeV; L_P ≈10⁻³³ cm)
- > dispersion of light:

$$p^2 c^2 = E^2 [1 + f(E/E_{QG})]$$

 two photons emitted simultaneously with energy difference ΔE:

$$\Delta t \big|_{small-z} \simeq s_{\pm} \frac{\Delta E}{M_{QG}} L$$

 > existing upper limits from pulsars, flaring AGNs and Gamma-ray Bursts; best "limit": 31 GeV photon from GRB 090510
⇒ E_{QG} > 1.5x10¹⁹ GeV

but: spectra might get harder with time...

Gernot Maier | DESY seminar | November 2011

Testing Lorentz Invariance with the Crab Pulsar

Summary - very-high energy gamma rays

- > astrophysics, cosmology, fundamental physics
- > ground-based Cherenkov astronomy is taking the next steps:
 - HESS II: a 5th very large telescope with an energy threshold ~30 GeV (2012)
 - MAGIC II: a 2nd telescope for stereoscopic observations (2010)
 - VERITAS upgrade: camera replacement with high-efficiency PMTs (2012)
 - the Cherenkov Telescope Array: factor of 10 in sensitivity (2016)
- DESY plays a key role in the preparation of CTA

