The Flavour of Rare Decays

Indirect Tests of the Standard Model

Thomas Mannel, Uni. Siegen

Ahmed Ali's Fest, June 21st, 2011

Thomas Mannel, Siegen University The Flavour of Rare Decays

Contents

Introduction: Why Study Rare Decays?

- Why do we believe in TeV Physics?
- What can Flavour tell us?
- 2 Rare Decays as a Telescope
 - The early days ...
 - More Recent Developments in $b \to s \ell \ell$ and $b \to s \gamma$
- Impact on our knowledge about Flavour
 - The History of the Unitarity Triangle

・ 同 ト ・ ヨ ト ・ ヨ ト

Why do we believe in TeV Physics? What can Flavour tell us?

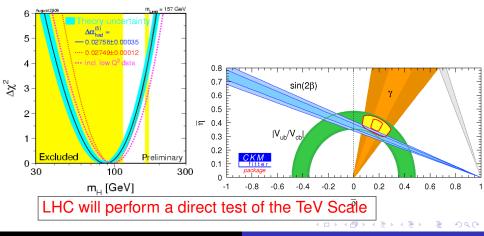
イロト 不得 とくほ とくほとう

3

Why Study Rare Decays?

Thomas Mannel, Siegen University The Flavour of Rare Decays

Why do we believe in TeV Physics? What can Flavour tell us?

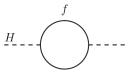

- The Standard Model passed all tests up to the 100 GeV Scale:
- LEP: test of the gauge Structure
- Flavour factories: test of the Flavour Sector

Why do we believe in TeV Physics? What can Flavour tell us?

• No siginicant deviation has been found (yet)!

• ... only a few "tensions" (= Observables off by $\sim 2\sigma$)

Thomas Mannel, Siegen University


The Flavour of Rare Decays

Why do we believe in TeV Physics? What can Flavour tell us?

ヘロン 人間 とくほ とくほ とう

Why do we believe in TeV Physics?

- Theoretical argument:
- Stabilization of the electroweak scale:

Quadratic Dependence on the cut-off

$$\Delta m_{H}^2 = -rac{\lambda_f^2}{8\pi^2}\Lambda_{
m UV}^2$$

• Drives the Higgs mass up to the UV cut off $\Lambda_{\rm UV} \sim \textit{M}_{\rm PL}$

Why do we believe in TeV Physics? What can Flavour tell us?

< 🗇 ▶

• Stabilization at the TeV scale: e.g. through SUSY:

Only logarithmic divergence

$$\Delta m_{H}^{2} = m_{\mathrm{soft}}^{2} rac{\lambda}{16\pi^{2}} \ln \left(rac{\Lambda_{\mathrm{UV}}}{m_{\mathrm{soft}}}
ight)$$

*m*_{soft} ~ O(TeV): Splitting between particles and particles

ヘロト ヘアト ヘビト ヘビト

- How strong are these arguments?
- Could there something be wrong with our understanding of
 - electroweak symmetry breaking?
 - scale and conformal invariance? (c.f. Lee Wick Model)
 - ...
- Does flavour tell us something about this? and what?

Why do we believe in TeV Physics? What can Flavour tell us?

イロト イポト イヨト イヨト

What can Flavour tell us?

- Flavour Physics ↔ No new physics at the TeV scale with a generic flavour structure
- Parametrization of new physics: Higher Dimensional Operators:

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}^{(5)} + \frac{1}{\Lambda^2} \mathcal{L}^{(6)} + \cdots \qquad \mathcal{L}^{(n)} = \sum_j C_j O_j^{(n)}$$

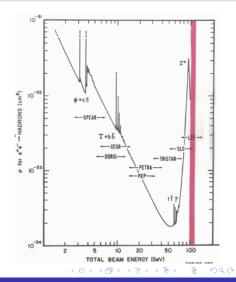
- Λ: New Physics scale
- $O_j^{(n)}$: Local Operators of dimension *n*

ヘロン 人間 とくほ とくほ とう

• Some of the $O_j^{(n)}$ may mediate flavour transitions: e.g.

$$\begin{split} &O_1^{(6)} = (\bar{s}_L \gamma_\mu d) (\bar{s}_L \gamma^\mu d) & (\text{Kaon Mixing}) \\ &O_2^{(6)} = (\bar{b}_L \gamma_\mu d) (\bar{b}_L \gamma^\mu d) & (B_d \text{ Mixing}) \\ &O_3^{(6)} = (\bar{b}_L \gamma_\mu 2) (\bar{b}_L \gamma^\mu s) & (B_s \text{ Mixing}) \\ &O_4^{(6)} = (\bar{c}_L \gamma_\mu u) (\bar{c}_L \gamma^\mu u) & (D \text{ Mixing}) \end{split}$$

- $\Lambda \sim 1000$ TeV from Kaon mixing ($C_i = 1$)
- $\Lambda \sim 1000$ TeV from D mixing
- $\Lambda \sim 400$ TeV from B_d mixing
- $\Lambda \sim 70$ TeV from B_s mixing


イロン 不得 とくほ とくほとう

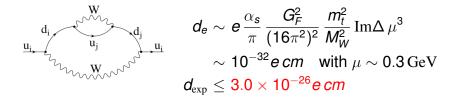
- "New physics" is around the corner??
- Are the flavour data a hint at a new physics scale well above the TeV scale?
- ... there are a few corners where O(1) flavour effects are still possible
- Are there lessons from history?

Why do we believe in TeV Physics? What can Flavour tell us?

The Top Quark Story

- First indirect hint to a heavy top quark:
 B B Oscillation of ARGUS (1987)
- The world in 1987 ("PETRA Days"): The top was believed to be at ~ 25 GeV ... based on good theoretical arguments
- ARGUS could not have seen anything with a 25 GeV Top (within SM)

イロト イポト イヨト イヨト


- The consequences:
 - (-) No Toponium
 - (-) No Top quark discovery at LEP and SLC
 - (-) No "New Physcis $\mathcal{O}(30~\text{GeV})$ " just around the corner
 - (+) CP violation in the *B* sector may become observable
 - (+) GIM is weak for bottom quarks
- This was actually good for Flavour Physics at that time ...
- GIM Suppressed rare decays as a 'telescope" to see large scales
- From current data: TeV "New Physics" must have a flavour structure close to the one of the SM
- $\bullet \rightarrow$ Concept of "Minimal Flavour Violation" (MFV)

Why do we believe in TeV Physics? What can Flavour tell us?

・ロト ・ 同ト ・ ヨト ・ ヨト

Peculiarities of SM Flavour Parametrization

- Strong CP remains mysterious
- Flavour diagonal CP Violation is well hidden:
 e.g electric dipole moment of the neutron: At least three loops (Shabalin)

イロト イ理ト イヨト イヨト

- Pattern of mixing and mixing induced CP violation determined by GIM: Tiny effects in the up quark sector
 - $\Delta C = 2$ is very small
 - Mixing with third generation is small: charm physics basically "two family"
 - $\bullet \rightarrow \mathsf{CP}$ violation in charm is small in the SM
- Fully consistent with particle physics observations
- ... but inconsistent with matter-antimatter asymmetry

??? Many Open Questions ???

- Our Understanding of Flavour is unsatisfactory:
 - 22 (out of 27) free Parameters of the SM originate from the Yukawa Sector (including Lepton Mixing)
 - Why is the CKM Matrix hierarchical?
 - Why is CKM so different from the PMNS?
 - Why are the quark masses (except the top mass) so small compared with the electroweak VEV?
 - Why do we have three families?
- Why is CP Violation in Flavour-diagonal Processes not observed? (e.g. z.B. electric dipolmoments of electron and neutron)
- Where is the CP violation needed to explain the matter-antimatter asymmetry of the Universe?

The early days ... More Recent Developments in $b o s\ell\ell$ and $b o s\gamma$

ヘロア 人間 アメヨア 人口 ア

ъ

Rare Decays as a Telescope

Thomas Mannel, Siegen University The Flavour of Rare Decays

The early days ... More Recent Developments in $b o s\ell\ell$ and $b o s\gamma$

ヘロン 人間 とくほとく ほとう

э

The "stargazers" of the "rare decays telescope" ...

The early days ... More Recent Developments in $b \to s\ell\ell$ and $b \to s\gamma$

Effective Weak Hamiltonian

• At the scale of the *b* quark: Integrate out the weak bosons and the top:

$$\begin{split} \mathcal{H}_{eff} &= \frac{4G_{F}}{\sqrt{2}} \lambda_{CKM} \sum_{k} \hat{C}_{k}(\mu) \mathcal{O}_{k}(\mu) \\ \mathcal{O}_{1} &= \left(\bar{c}_{L,i}\gamma_{\mu}s_{L,j}\right) \left(\bar{d}_{L,j}\gamma_{\mu}u_{L,i}\right) , \quad \mathcal{O}_{2} = \left(\bar{c}_{L,i}\gamma_{\mu}s_{L,i}\right) \left(\bar{d}_{L,j}\gamma_{\mu}u_{L,j}\right) , \\ \mathcal{O}_{3} &= \left(\bar{s}_{L,i}\gamma_{\mu}b_{L,i}\right) \sum_{q=u,d,s,c,b} \left(\bar{q}_{L,j}\gamma^{\mu}q_{L,j}\right) , \quad \mathcal{O}_{4} = \left(\bar{s}_{L,i}\gamma_{\mu}b_{L,j}\right) \sum_{q=u,d,s,c,b} \left(\bar{q}_{L,j}\gamma^{\mu}q_{L,i}\right) , \\ \mathcal{O}_{5} &= \left(\bar{s}_{L,i}\gamma_{\mu}b_{L,i}\right) \sum_{q=u,d,s,c,b} \left(\bar{q}_{R,j}\gamma^{\mu}q_{R,j}\right) , \quad \mathcal{O}_{6} = \left(\bar{s}_{L,i}\gamma_{\mu}b_{L,j}\right) \sum_{q=u,d,s,c,b} \left(\bar{q}_{R,j}\gamma^{\mu}q_{R,i}\right) . \\ \mathcal{O}_{7} &= \frac{e}{16\pi^{2}} m_{b} (\bar{s}_{L,\alpha}\sigma_{\mu\nu}b_{R,\alpha}) F^{\mu\nu} , \quad \mathcal{O}_{8} = \frac{g}{16\pi^{2}} m_{b} (\bar{s}_{L,\alpha}T_{\alpha\beta}^{a}\sigma_{\mu\nu}b_{R,\alpha}) G^{a\mu\nu} , \\ \mathcal{O}_{9} &= \frac{1}{2} (\bar{s}_{L}\gamma_{\mu}b_{L}) (\bar{\ell}\gamma^{\mu}\ell) , \quad \mathcal{O}_{10} = \frac{1}{2} (\bar{s}_{L}\gamma_{\mu}b_{L}) (\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \end{split}$$

Coefficients in the SM are known to NLO!

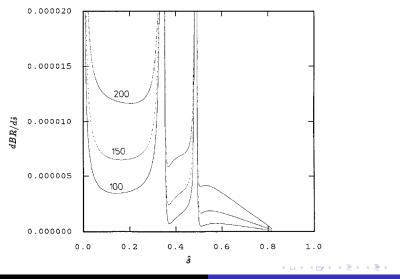
イロト イポト イヨト イヨト

- All physics at high scales larger than μ is encoded in the Coefficients C

 ^ˆ
 ^k
 (μ)
- ullet ightarrow need to measure / constrain these coefficients
- Opens the possibility to perform a model independent check of the SM (Ali et al., 1994)

Towards a model-independent analysis of rare B decays

A. Ali*, G.F. Giudice**, T. Mannel

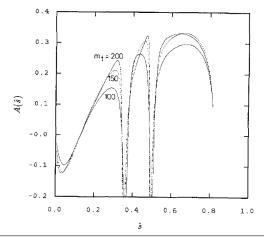

Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Received: 6 September 1994/Revised version: 13 January 1995

- At that time: First measurement of $B \rightarrow X_s \gamma$ by CLEO
- Identify observables with sensitivity to the coefficients

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

Differential rate



Thomas Mannel, Siegen University The Flavour of Rare Decays

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

500

Forward backward asymmetry

There is a zero in the forward backward asymmetry in the SM!

Thomas Mannel, Siegen University The Flavour of Rare Decays

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

- 1994: CLEO measurements mainly constrained $|C_7|$
- C_7 still could be grossly off the SM by $C_7 = -C_{7,SM}$

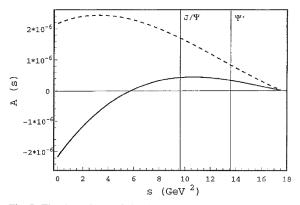
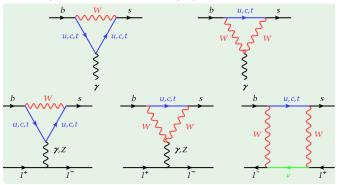


Fig. 7. The dependence of the differential FB asymmetry on the Wilson coefficients. Solid line: SM. Long-dashed line: $C_7 \rightarrow -C_7$, with the other parameters retaining their SM values. The vertical lines indicate the location of the J/Ψ and Ψ' resonances

イロト 不得 とくほと くほとう

1


- Observables: Integrated rate below and above the cc
 resonances
- Forward backward Asymmetry, integrated below and above the cc̄ resonances
- More recently: Angular distributions of leptons and *K*^{*} polarizations

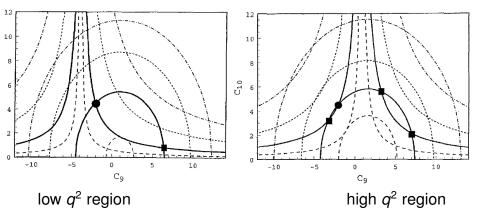
(Hiller et al.)

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

Assumptions

 Only the coefficients C₉ and C₁₀ induced by loop diagrams contain "new physics"

• $\rightarrow C_1...C_6$ are fixed to their SM values

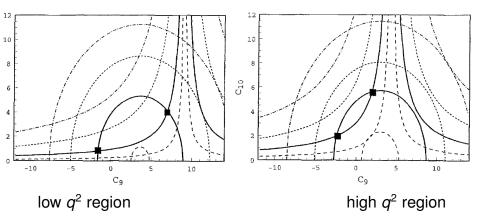

• $|C_7|$ is fixed by the measurement of $B o X_s \gamma$

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

→ E → < E →</p>

э

$C_9 - C_{10}$ Contours for $C_7 = C_{7,SM}$



The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

★ Ξ > ★ Ξ >

э

$C_9 - \overline{C}_{10}$ Contours for $C_7 = -\overline{C}_{7,SM}$

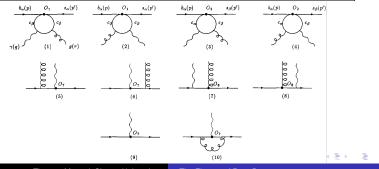
The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

イロト 不得 とくほ とくほとう

$B \rightarrow X_s \gamma$ and $B \rightarrow K^* \gamma$

- Continuous work since the CLEO discovery
- More data from different experiments ...
- More theory needed as well
- Calculations up to NLO
- Exclusive decays: Form factors needed

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$


Early work by Ahmed and Collaborators

A profile of the final states in $B \rightarrow X_s + \gamma$ and an estimate of the branching ratio $BR(B \rightarrow K^* + \gamma)$

A. Ali and C. Greub

Deutsches Elektronen Synchrotron DESY, W-2000 Hamburg, FRG

Received 11 January 1991; revised manuscript received 7 February 1991

The Flavour of Rare Decays

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

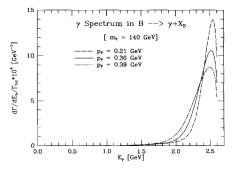


Fig. 3. Inclusive photon energy spectrum for the process $B \rightarrow X_s + \gamma$ using perturbative QCD and the B-meson wave function model described in the text, and $m_i = 140$ GeV. The three indicated values of the parameter p_F bracket the recent $(\pm 1\sigma)$ -fits of the CLEO data from the lepton energy spectrum in B-decays [16].

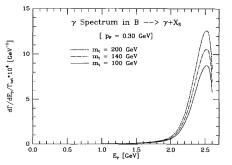
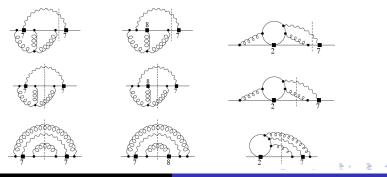


Fig. 4. Inclusive photon energy spectrum for the process $B \rightarrow X_s + \gamma$ using perturbative QCD and the B-meson wave function model described in the text, with the parameter p_T set to 0.3 GeV, and three representative values of the top quark mass as indicated.


イロト イポト イヨト イヨト

э

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

Status of $b \rightarrow s\gamma$

- Higher orders in the perturbative calculation: Full NLO
- Estimate of the non-perturbative contributions: Still some controversy

Thomas Mannel, Siegen University

The Flavour of Rare Decays

ヘロト 人間 ト ヘヨト ヘヨト

æ

• Theoretical prediction: (Misiak 2010)

$$\mathcal{B}(ar{B}
ightarrow X_{s} \gamma) = (3.15 \pm 0.23) imes 10^{-4}$$

• Experimental value (HFAG):

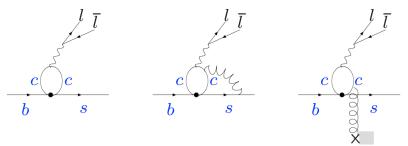
$$\mathcal{B}(ar{B}
ightarrow X_{s} \gamma) = (3.55 \pm 0.24_{ ext{exp}} \pm 0.09_{ ext{model}}) imes 10^{-4}$$

- Can we calculate more precisely?
- ... will be a challenge ...

ヘロト 人間 ト ヘヨト ヘヨト

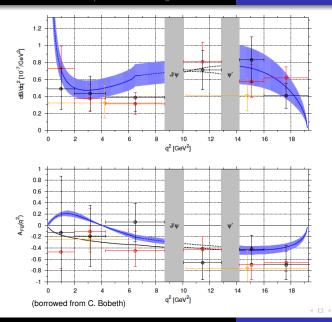
More Recent Developments in $b \rightarrow s \ell \ell$

- Model independent analysis has been refined by Ahmed and his Co-workers
 - by also including the information from $b
 ightarrow s \gamma$
 - by working it out for exclusive decays
 - by using more refined form factors
 - by enlarging the operator basis (e.g. by right handed currents)
- Still problems remain: Hadronic matrix elements
- ... some of which are not just form factors ...


The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

★ E → ★ E →

Charm Loops


Buchalla, Isidori, recently: Khodjamirian, TM, Pivovarov, Wang

Charm-loop effect: a combination of the (sc)(cb) weak interaction (O_{1,2}) and e.m.interaction (cc)(ll)

new hadronic matrix elements, not a form factor

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

Br and A_{FB}

SM prediction + unc. @ low- and high- q^2

Data points from

⇒ < ⇒ >

ъ

[Babar '08]

[Belle '09]

[CDF '10]

イロト イポト イヨト イヨト

- For q² < 4m²_c: Light cone expansion of the charm loop
- Expansion parameter $\frac{\Lambda_{QCD}^2}{(4m_c^2 q^2)}$
- Leads to a non-local operator ("shape-function-like" operator)

$$\widetilde{\mathcal{O}}_{\mu}(\boldsymbol{q}) = \int \boldsymbol{d}\omega \ \boldsymbol{I}_{\mu
holphaeta}(\boldsymbol{q}, \boldsymbol{m}_{c}, \omega) \mathbf{\bar{s}}_{L} \gamma^{
ho} \left(\delta[\omega - rac{(in_{+}\mathcal{D})}{2}] \widetilde{\boldsymbol{G}}_{lphaeta}\right) \boldsymbol{b}_{L} \ ,$$

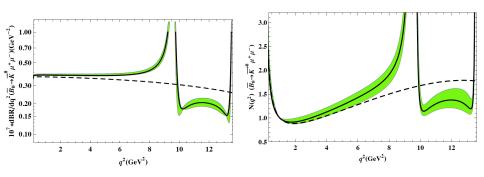
• Matrix element for the exclusive decays can be calculated in a LCSR for $q^2 \le 4m_c^2$

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

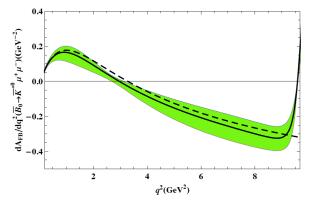
ヘロア 人間 アメヨア 人口 ア

Use dispersion relations to extrapolate into the resonance region:

$$\begin{aligned} \mathcal{H}^{(B \to K)}(q^2) &= \mathcal{H}^{(B \to K)}(0) \\ &+ q^2 \left[\sum_{\psi = \psi(1S), \psi(2S), \dots} \frac{f_{\psi} A_{B\psi K}}{m_{\psi}^2 (m_{\psi}^2 - q^2 - im_{\psi} \Gamma_{\psi})} \right. \\ &+ \int_{4m_D^2}^{\infty} ds \frac{\rho(s)}{s(s - q^2 - i\epsilon)} \right] \end{aligned}$$


- $|A_{B\psi K}|$ and f_{ψ} are determined from data.
- Phases of $A_{B\psi K}$ may lead to destructive interference
- alternating signs possible ...

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$


★ E → ★ E →

э

Results on $B \to K^{(*)} \ell^+ \ell^-$

The early days ... More Recent Developments in $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$

Problem to compute at large q^2 ? ... still a good predicton of the zero in A_{FB} , This is a good "telescope"

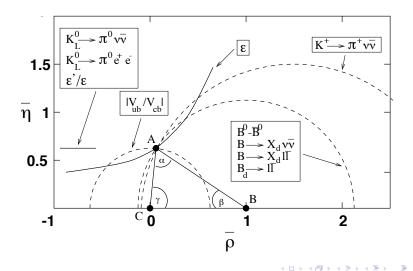
イロト 不得 とくほと くほとう

3

- Region of large q^2 : Difficult due to resonances
- For very large q^2 : Duality will work again ...
- Ongoing work ...

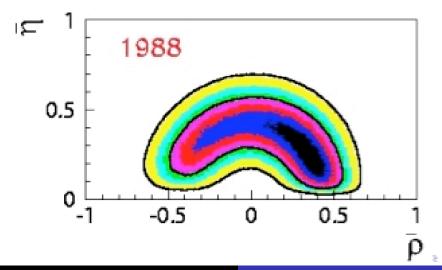
The History of the Unitarity Triangle

ヘロト ヘ戸ト ヘヨト ヘヨト


э

Impact on our knowledge about Flavour

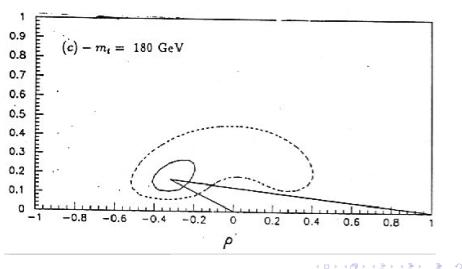
Thomas Mannel, Siegen University The Flavour of Rare Decays


The History of the Unitarity Triangle

CKM Unitarity

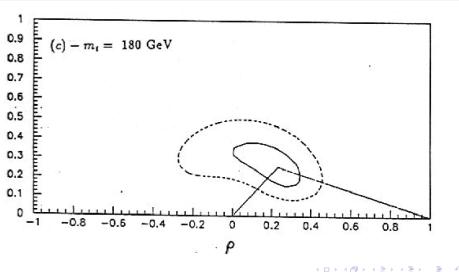
The History of the Unitarity Triangle

The situation \sim 88

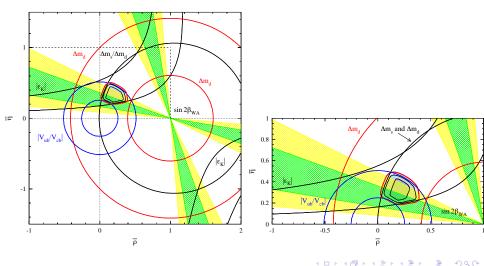

ヘロト ヘアト ヘビト ヘビト

The history of the UT since \sim 1993

- Situation in 1993:
 - HQET was still young (~ 3 years)
 - Hadronic Matrix elements for $\Delta m_d \sim f_B^2$ were quite uncertain
 - V_{ub}/V_{cb} was known at the level of $\sim 20\%$
 - The top quark mass was still $m_t \sim (140 \pm 40) \text{ GeV}$
 - No CP violation has been observed except ε_K
- The UT still could have been "flat"

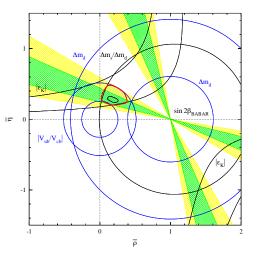

The History of the Unitarity Triangle

Unitarity triangle 1993: $f_B = 135 \pm 25$ MeV

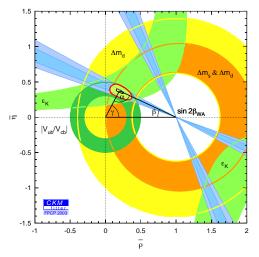

The History of the Unitarity Triangle

Unitarity triangle 1993: $f_B = 200 \pm 30 \text{ MeV}$

The History of the Unitarity Triangle


2001: First observation of "Non-Kaon CPV"

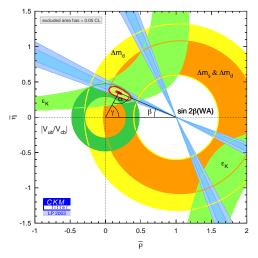
The History of the Unitarity Triangle


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Unitarity Triangle 2001

The History of the Unitarity Triangle

Unitarity Triangle 2002

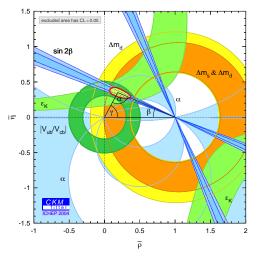

 Some improvement of *V_{ub}*/*V_{cb}* through the Heavy Quark Expansion

(E)

• More data on
$$\mathcal{A}_{\mathrm{CP}}(B o J/\Psi K_s)$$

The History of the Unitarity Triangle

Unitarity Triangle 2003

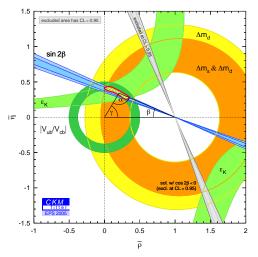


- Slight improvement of f²_BB_B from lattice calculations
- Still more data on ${\cal A}_{
 m CP}(B o J/\Psi K_s)$
- Central value of *V_{ub}/V_{cb}* slightly moved

・ロット (雪) () () () ()

The History of the Unitarity Triangle

Unitarity Triangle 2004

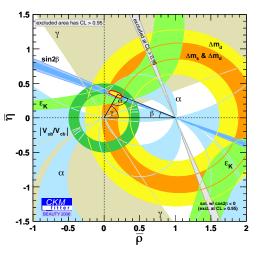


- More improvement of f²_BB_B from lattice calculations
- Still more data on ${\cal A}_{
 m CP}(B o J/\Psi K_s)$
- First constraints on the angle α from B → ρρ

ヘロア 人間 アメヨア 人口 ア

The History of the Unitarity Triangle

Unitarity Triangle 2005



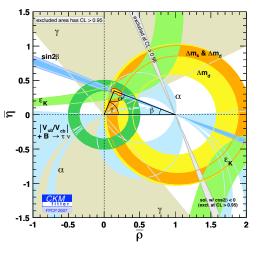
- Still more data on ${\cal A}_{
 m CP}(B o J/\Psi K_s)$
- Exclusion of the "wrong branch" of β
- Dramatic Improvement of *V_{ub}* from the HQE

くロト (過) (目) (日)

The History of the Unitarity Triangle

Unitarity Triangle 2006

- TEVATRON measurement of ∆m_s
- Tighter constraints on α

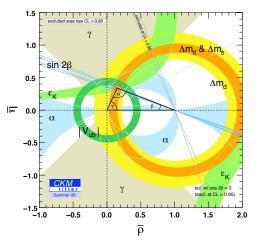

A D > A D >

• First constraints on γ from CPV in $B \rightarrow K\pi$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The History of the Unitarity Triangle

Unitarity Triangle 2007

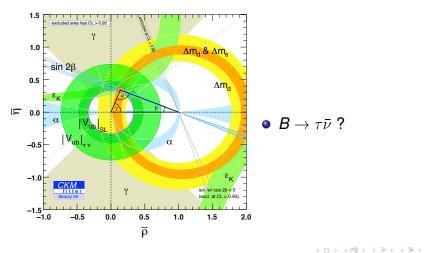


• First input from $B \rightarrow \tau \bar{\nu}$

(人) (日本) (日本)

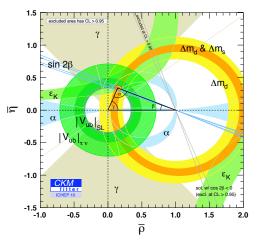
The History of the Unitarity Triangle

Unitarity Triangle 2008


- Improved Δm_s
- We thought we knew V_{ub} quite well
- Tensions become visible

∃ > < ∃ >

The History of the Unitarity Triangle


ъ

Unitarity Triangle 2009

The History of the Unitarity Triangle

Current Unitarity Triangle

Some clarifications needed!

★ E > < E >

э

 First hint to something new?

The History of the Unitarity Triangle

ヘロト ヘアト ヘビト ヘビト

3

NO Conclusions

... since the story will go on

Thomas Mannel, Siegen University The Flavour of Rare Decays

The History of the Unitarity Triangle

NO Conclusions

... since the story will go on

! This was last week at the bsll2011 workshop !

The History of the Unitarity Triangle

(本間) (本語) (本語)

NO Conclusions

... since the story will go on

! This was last week at the bsll2011 workshop ! Best wishes for the future