Results from heavy ion collisions at LHC

Bolek Wyslouch

École Polytechnique and MIT

Relativistic Heavy Ion Collisions

Motivation: temperature and density

DESY

What is new at LHC?

	AGS	SPS	RHIC	LHC
√s _{NN} (GeV)	5	20	200	5500 (2760)
Increasing factor		x4	x10	X28(14)
η range	±1.6	±3.0	±5.3	±8.6

- LHC energies are far exceeding previous heavy-ion accelerators
 - A hotter. denser. and longer lived partonic matter

- E_T of about 2 TeV per unit pseudorapidity for central events
- Translates to energy density three times higher than at RHIC ~15 GeV/fm³

Production rates at LHC

- Large rates of various hard probes over a larger kinematic range
- Plenty of heavy quarks (*b* & *c*)
- Weakly interacting probes are available ($W^{\pm} \& Z^{0}$)

CERN Accelerator Complex

Lead Beams in LHC

• LHC is accelerating ions of ²⁰⁸Pb, fully ionized, charge +82

ECR

- Energy of 2.76 TeV/nucleon pair (82/208=0.4 times proton energy)
- "Only" 7 10⁷ ions per bunch, much less than typical proton bunch of 10¹¹ Electrostatics!
- In 2010 LHC collided up to ~140 bunches per beam, about 1/40 of nominal luminosity, ~200 Hz of inelastic collisions

Luminosity

The switch from pp to PbPb went really fast...

The experiments: complementary and redundant

State of the art!

- ALICE: Dedicated HI experiment with large suite of detectors optimized for high efficiency tracking and particle identification across large range of momenta from below ~100 MeV/c to above 100 GeV/c
- ATLAS: Large acceptance, calorimetric system particularly well suited for detailed jet studies. A multipurpose detector, designed to study relatively high p_T particles with p_T >~0.5 GeV/c
- CMS: Particularly large calorimetric detector coverage, including very forward, and good momentum resolution due to high B field. A multipurpose detector, designed to study relatively high p_T particles with p_T >~0.5 GeV/c.

Differencent acceptance, p_T range, particle ID

- Different B field: 0.5T, 2T, 4T
- Different emphasis on hermeticity
- Different emphasis on particle ID
- Different DAQ capabilities
- Different detector technologies

Data taking worked flawlessly

DESY Seminar, June 7-8, 2011

11

Centrality: overlap of colliding ions

- All experiments use forward detectors: Participants/multiplicity
- Additional information from Zero Degree Calorimeters: Spectators

Charged particle multiplicity

- ~17000 charged particles in most central collisions
- Large increase compared to lower energies
- Centrality dependence similar to lower energies

Particle production in Pb-Pb: azimuthal anisotropy

Radial expansion (radial flow)

- By comparing momenta of particles with different masses one can estimate speed of expansion of the fireball: up to $\beta \approx 0.66$
- Particle ID is essential here..

Higher harmonics: fluctuations of initial state

Jet "quenching" in heavy ion collisions

- Single particle spectra
 - Compare to pp: R_{AA}
- Study different particles
 - Colorless: Photon, Z, W colorless
 - Colored: Charged particles, π⁰, bquarks
- Identify full jets
 - Jet energy spectra
 - Dijet energy asymmetry
 - Jet fragmentation
 - γ-jet, Z-jet
- Study as a function of p_T, centrality

Jet quenching via hadron suppression

#(particles observed in AA collision per N-N (binary) collision)

#(particles observed per p-p collision)

Cross-section

RAA

R_{AA} for multiple particle types

- Colorless particles are not quenched
- Colored particles are strongly quenched

A peripheral event

A more central event

A very central event

Jets in the CMS detector

Parton energy loss

• Key ingredients of parton energy loss calculations:

Parton propagation in the nuclear medium Radiative- Collisional-energy loss Parton Showering (Fragmentation)

- Components sensitive to
 - medium properties
 - where and when the process happens
- Reconstructed dijets
 - full final state of hard scatterings
 - study the individual components contributing to the parton energy loss

Jet spectra in PbPb and pp reference

^{*}Uncorrected for p_T resolution

Jet angular correlation

The propagation of high $p_{\rm T}$ partons in a dense nuclear medium does not lead to a visible angular decorrelation

Dijet asymmetry

- Dijet selection:
 - $|\eta^{\text{Jet}}| < 2$
 - Leading jet $p_{T,1} > 120 \text{GeV/c}$
 - Subleading jet p_{T,2} > 50GeV/c
 - $\Delta \phi_{1,2} > 2\pi/3$

Quantify dijet energy imbalance by asymmetry ratio:

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

• Removes uncertainties in overall jet energy scale

Dijet energy imbalance: ATLAS

Dijet energy imbalance: CMS

Parton energy loss is observed as a pronounced energy imbalance in central PbPb

Missing-p_T||

Missing
$$p_T^{\parallel}$$
: $p_T^{\parallel} = \sum_{\text{Tracks}} -p_T^{\text{Track}} \cos(\phi_{\text{Track}} - \phi_{\text{Leading Jet}})$

Calculate projection of p_T on leading jet axis and average over selected tracks with

p_T > 0.5 GeV/c and |η| < 2.4

Bolek Wyslouch (LLR/MIT)

Leading Jet defines direction

$Missing-p_T^{||}$

Missing
$$p_T^{\parallel}$$
: $p_T^{\parallel} = \sum_{\text{Tracks}} -p_T^{\text{Track}} \cos(\phi_{\text{Track}} - \phi_{\text{Leading Jet}})$

Calculate projection of p_T on leading jet axis and average over selected tracks with

p_T > 0.5 GeV/c and |η| < 2.4

Sum all tracks in the event

Missing-p_T

$Missing-p_T^{\parallel}$

Momentum balance is restored by integrating over event final state

$Missing-p_T^{\parallel}$

Missing-p_T

The momentum difference in the dijet is balanced by low p_T particles at large angles to the jet axis

$Missing-p_T^{\parallel}$

Jet rates: fewer in central collisions

Fragmentation function

 Studies by ATLAS and CMS indicate that jets "look" like normal pp jets but with different energy: partons lose energy in the medium but the jets fragment in vacuum

Bolek Wyslouch (LLR/MIT)

Jet "quenching" in HI: what have we learned so far?

- Effects are huge: tens of GeV are lost by partons as they traverse hot medium (ATLAS, CMS)
- Particle spectra are consistent with RHIC observations (ALICE)
- The deposited energy leads to the production of many low p_T particles, distributed in wide range of angles, away from the jet axis (CMS)
- The jets seem to fragment like jets produced in the vacuum (CMS)

- Most of theoretical work done to interpret RHIC results needs to be reworked: we expected modifications to fragmentation functions
- We can do these measurements because jet energies are higher but also because we have large acceptance, hermetic detectors

Compact Muon Solenoid: $\mu^+\mu^-$ invariant mass

Quarkonia in heavy ion collisions

- Good candidates to probe the QGP in HIC
 - Large masses and (dominantly) produced at the early stage of the collision via hard-scattering of gluons
 - Strongly bound resonances

State	J/ψ (1S)	χ_c (1P)	ψ' (2S)
m (GeV/ c^2)	3.10	3.53	3.68
<i>r</i> ₀ (fm)	0.50	0.72	0.90

State	Υ (1S)	χ_b (1P)	Υ´ (2S)	χ'_{b} (2P)	Ϋ́ (3S)		
m (GeV/ c^2)	9.46	9.99	10.02	10.26	10.36		
<i>r</i> ₀ (fm)	0.28	0.44	0.56	0.68	0.78		

decreasing binding energy

The start : quarkonia should melt in the QGP T. Matsui & H. Satz PLB178, 416 (1986) Color Screening

Complex production of quarkonia in hadron collisions

Production mechanism not completely understood

The NNLO* is not a complete NNLO \rightarrow possibility of (large) uncanceled logs ! If NNLO* \approx NLO, problem with polarization

- Many effects altering production in nuclear reactions
 - In pA, cold nuclear matter (CNM) effects
 - Extensively studied at the SPS and RHIC
 - But different at the LHC ?
 - In AA, hot medium effects

J/ψ suppression puzzles

- No increase of the suppression with local density R_{AA} (|y|<0.35) > R_{AA} (1.2<|y|<2.2)
- Similar suppression at SPS and RHIC energies R_{AA} (RHIC, |y| < 0.35) $\approx R_{AA}$ (SPS)
- Possible ingredients
 - -Suppression (gluon diss.)
 - -Sequential melting
 - -Gluon saturation / shadowing
 - -Regeneration
 - -Some combination of all

J/ψ and Υ at LHC

- J/ ψ observed by all experiments: compare suppression with lower energies
 - ALICE: low p_T, forward
 - CMS/ATLAS: high p_T central
- Y reported by CMS, look for all three bound states

Suppression of J/ψ

- ATLAS and CMS: comparable to RHIC but at high p_{T}
- ALICE: smaller suppression
- p_{T} and coverage differences...

Suppression of excited Υ states

- Excited states $\Upsilon(2S,3S)$ relative to $\Upsilon(1S)$ are suppressed
- Probability to obtain measured value, or lower, if the real double ratio is unity, has been calculated to be less than 1%

Z bosons

- $Z \rightarrow \ell^+ \ell^-$ signal is essentially unaffected by the strongly interacting medium produced in heavy ion collisions
- Z production is a reference for processes modified by the medium such as quarkonia production, jets via Z-jet process
- Precise measurement of Z production in heavy ion collisions can help to constrain nuclear parton distribution functions

Our first $Z^0 \rightarrow \mu^+ \mu^-$ candidate

$Z^0 \rightarrow e^+e^-$ candidate

CMS Experiment at LHC, CERN Data recorded: Mon Nov 15 08:22:35 2010 CEST Run/Event: 151088 / 587437 Lumi section: 97

 $Z^0 \rightarrow \mu^+ \mu^-$

• Excellent agreement with pp data and MC

$W \rightarrow \mu \nu$

- W bosons are not expected to interact with the hot medium
- W detection is more difficult than Z
 - ATLAS: muon spectra, template
 - CMS: muon spectra, M_T

W & Z yield do not depend on centrality

Consistent with other colorless probes

Prospects for the near future

- Next HI run at LHC: November 14, 2011
 - About 5-8 times higher luminosity of PbPb collisions
 - Detailed studies of jets and quarkonia
 - Test of pPb acceleration
- 2012 run:
 - More statistics of PbPb OR pPb?

Summary

- During the first LHC Heavy Ion run LHC experiments collected ~9µb⁻¹ PbPb collisions at energy 14 times higher than at RHIC
- Hot, dense and fast expanding medium
 - Strong elliptic and radial flow
 - Transverse energy density approaching 2 TeV per unit rapidity
- Production of colored probes strongly affected by hot medium
 - Modified particle spectra, R_{AA}
 - Measurements include identified particles, b-quarks
 - Jet quenching, parton energy distributed over large rapidity
- Colorless probes not affected by medium
 - Photons, Z, W
- Interesting patterns of quarkonium production
 - J/ψ suppressed at high p_T , enhanced at low p_T (compared to RHIC)
 - Suppression of excited Υ states

