

New Results

Klaus Rith

University of Erlangen-Nürnberg

HERA Symposium 2011

July 5, 2011

Quark Properties:

- fractional charge
- *spin-1/2*
- Iongitudinal momentum xP
- intrinsic transverse momentum p_T
- spatial position r₁
- orbital angular momentum L

Main HERMES research topics:

Origin of nucleon spin

(non-relativistic electrons in Coulomb potential)

Rutherford

Bohr, Schrödinger, ..

3

(Relativistic quarks in colour field)

Inclusive DIS

Add angular and transverse momentum

Number density of quarks with longitudinal momentum fraction x

Accessing the nucleon's structure

Nucleon structure described by 8 leading-twist (+ many subleading) quark distributions containing information about quark orbital motion and spinorbit effects

Inclusive Measurements

Longitudinal double-spin asymmetry: g_1 , $\Delta\Sigma$ P.R. D 75 (2007) 012007

Unpolarised DIS cross section: F₂

Semi-inclusive Measurements

Semi-inclusive Deep-Inelastic Scattering

DF(x,Q²): Parton Distribution Function - $q(x,Q^2) \equiv f_1^{q}(x,Q^2)$, $\Delta q(x,Q^2) \equiv g_1^{q}(x,Q^2), \ \delta q(x,Q^2) \equiv h_1^{q}(x,Q^2)$, ...

FF(z,Q^2): Fragmentation Function - $D_1^{q \rightarrow h}(z,Q^2)$, $H_1^{\perp q \rightarrow h}(z,Q^2)$, ...

Charged-hadron multiplicities I

Charged-hadron multiplicities II

Disentanglement of z and $P_{h\perp}$ dependences

 $\sigma_{UU} \propto f_1^q \otimes D_1^{q \rightarrow h}$

Access to intrinsic quark p_T and fragmentation k_T

Double-spin asymmetry A₁^h

Refined studies extending the work in Phys. Rev. D 71 (2005) 012003

 $\sigma_{LL} \propto g_1^q \otimes D_1^{q \to h}$

0.4

0.5 0.6 0.7

0.4 0.5 0.6 0.7 0.8

Leading-twist TMDs

- Nucleon structure described in leading-twist by 8 transverse-momentum dependent quark distributions (TMDs)
 - HERMES has access to all of them through specific azimuthal modulations (ϕ , ϕ s) of the cross section thanks to the polarised beam and target

Leading-twist TMDs

Pioneering measurements by HERMES

Boer-Mulders DF h₁^{⊥,q}

Worm-gear DF $g_{1T}^{\perp,q}$

Exclusive Measurements

Generalised parton distributions

- Generalisation of Form Factors (moments of GPDs) and PDFs (forward limit)
- Correlated information about longitudinal momentum xp and transverse spatial position $\mathbf{r}_{\!\!\perp}$

Ji relation:

$$J_q = 1/2\Delta\Sigma + \bigcup_{t \to 0} = \lim_{t \to 0} \int_{-1}^{1} dx \times [H(x,\zeta,t) + E(x,\zeta,t)]$$

- Final state sensitive to different GPDs
- Spin-½ target: 4 chiral-even leading-twist quark GPDs
- H, \tilde{H} (E, \tilde{E}) conserve (flip) nucleon helicity
- Vector mesons (ρ , ω , ϕ) H, E
- Pseudoscalar mesons(π , η) H, E
- DVCS (γ) H, E, H, E

Hard exclusive ρ^{o} -meson production I

Hard exclusive ρ° -meson production II

Hernes Deeply Virtual Compton Scattering & GPDs

- Theoretically cleanest way to access GPDs
- Interference between DVCS and Bethe-Heitler amplitude
- IT_{DVCS} << |T_{BH} @ HERMES
- Access to GPD combinations through azimuthal asymmetries
- HERMES: Complete set of asymmetries
 - Both beam charges
 - Both beam helicities
 - Unpolarised H, D and nuclear targets
 - Longitudinally polarised H and D targets
 - Transversely polarised H target

bVCS asymmetries measured @ HERMES

DVCS: transverse target asymmetry A_{UT}

hermes

Model: VGG with variation of J_u , while $J_d=0$

thermes **DVCS transverse double-spin asymmetry** A_{LT}

DVCS with Recoil Detector

Recoil Detector to tag exclusivity

DVCS with Recoil Detector

Pure elastic DVCS

0

Indication that leading amplitude for pure elastic process is slightly larger than for unresolved signal (elastic + associated)

Pure elastic DVCS

Indication that leading amplitude for pure elastic process is slightly larger than for unresolved signal (elastic + associated)

Double-spin asymmetry A₁^h

Refined studies extending the work in Phys. Rev. D 71 (2005) 012003 $\sigma_{LL} \propto g_1^q \otimes D_1^{q \to h}$

Sensitive to differences in transverse momentum dependence of g_1 and f_1

No significant P_{h⊥} dependence observed

Sivers Amplitudes for Pions

- First observation of non-zero Sivers DF in DIS
 Rise at low P_{h⊥}, plateau at high P_{h⊥}
 Clear rise with z
 Non-zero at low ×
 - Experimental evidence for orbital angular momentum L_q of quarks
 - But: Quantitative contribution of L_q to nucleon spin still unclear

Fit to HERMES (ep^{\uparrow}-> ehX) and COMPASS (μd^{\uparrow} -> μhX) data

Sivers distribution

M. Anselmino et al., Phys. Rev. D79 (2009) 054010

