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Rutherford

• Born 1871 Brightwater, New Zealand; 

•  BA, MA, BSc – Canterbury College NZ

• 1895-1898   Postgraduate study at Cambridge (UK) – ‘1851 Scholarship’
• 1898-1907   Macdonald Professor of Physics at McGill University (Montreal)

– research on radioactivity – introduced concept of the ‘half-life’

• Nobel Prize 1908 for Chemistry
- For investigations into the disintegration of the elements, and the chemistry of 

radioactive substances

• 1907-1919   Langsworthy Professor of Physics, Manchester University
– his most notable work on nuclear physics was done in Manchester

• 1919-1937   Director of the Cavendish Laboratory at Cambridge
– he attracted talented colleagues and students from around the World

– at this time the Cavendish was the leading centre in the World for nuclear physics 

• died 1937 Cambridge, England
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Introduction

Atomic Physics at the start of the 20th Century
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Hydrogen spectra

  Spectral analysis of elements developed rapidly during 2nd half

    of 19th Century, particularly the work of Bunsen and Kirchoff

  Kit was simple but accurate: bunsen burner; platinum wire

    'ring

•

•
let' to hold the sample; prism; telescope; scale.

    

  Spectral analysis developed rapidly becoming an important 

    tool and having a huge impact on astrophysics

  Frequency of lines:  Ritz 'combina

•

•
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Radioactivity 1896 - 1908

α, β, γ  decays of heavy elements (Uranium, Thorium)    discovered and classified

•  Roentgen  (1895):    X-rays, conduction of electricity through rarified gases

•  Becquerel  (1896):    ‘On radiation emitted in phosphorescence’ 
                                                                     (potassium uranyl disulfate)

•  J J Thomson (1897):  Charge to mass ratio for cathode rays –
                                                                                  discovery of the electron

•  Marie and Pierre Curie (1898):   Isolated polonium and radium from pitchblende

•  Kaufmann (1902):       Established that β-rays are electrons
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Radium

speck of Radium (about

0.1 mm across) emitting

α-particles in all directions

captured in an emulsion 

photograph

you can almost feel the 

aggressive power of the

source
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Rutherford on Bequerel Rays 

– (1899)  ‘...uranium radiation is complex, and there are at present at least two distinct 
types of radiation – one that is readily absorbed, which will be termed for 
convenience the α radiation, and the other of a more penetrative character, will be 
termed the β radiation.’

– (1903-1905) α particles:: positive charge from charge/mass measurements – 

                   if charge on the α is same as that of H ion, then the mass is twice 
that of H

– 1908 (Proc. Roy. Soc. with Geiger): ‘...evidence strongly in favour of the view that 
the charge of the α particle is 2e, where e is proton charge’

                             ‘We may conclude... that the α particle is a helium atom,... 
’

– 1909 (Phil.Mag with Royds): ‘We can conclude with certainty... that the α particle is 
a helium atom’  - they had demonstrated that the He spectrum was produced when an 
electrical discharge was applied to α particles collected from radium decay 
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Nature of the α-Particle 

Rutherford and Geiger, Proc. Roy. Soc. A81, 162, 1908
Source
Radium C (214Bi)

Aluminium foil
  window

α particles collected here, the number counted electrically
total charge measured by an electrometer
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Rutherford & Royds

Radium emanation (Rn222) from 140 mg 
radium at A, inside thin glass tube 

Tube A – wall thickness < 1/100 mm
 thin enough to allow an α to escape but 
 impervious to passage of helium or 
 other radioactive products 

 Ranges of alphas ~ 4 -7 cm, so majority
  escape and range determined by use
  of zinc-sulphide screen

Enough alphas were retained in the outer 
tube (after 6 days) to give clear 
spectroscopic evidence for Helium

The accomplished glass blower
was Otto Baumbach

Phil. Mag. 17, 281, 1909
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J J Thomson – discovered the electron 1897

Thomson also put forward the  ‘plum pudding’ model of the atom 

A posed photo! 

Thomson with
equipment he used 
to measure 
electron charge to
mass ratio e/m      
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Plum Pudding(s)

The one you eat –
particularly at Christmas

Thomson’s 
‘plum pudding model’
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 Started with a planar model - electrons in rings about a central nuclear charge - ignored radiation 
         - found stable structures for well defined numbers per ring - hard to generalise to a sph
•

ere   

 3-D model - electrons in a sphere of positive charge radius  -   

 He derived results for: 

                  (a) the refractive index on mono

the 'plum pudding' 

atomic gases; 

     

model

       

R•

•

( )2 2 2
0 0 0

      (b) the fractional energy loss of an X-ray beam per unit length:  

8
                 where ,   4  is the classical radius of the electron  

3
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    (  atoms per unit volume;  electrons of mass )

                  (c) the absorption of -rays in matter by scattering off atomic electrons

 

 Compared results, favourably, with experimental data f
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J J Thomson –  atomic models (1903-1906)
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The nuclear atom
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Rutherford & Geiger
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The nuclear atom

Geiger & Marsden  1909
On a Diffuse Reflection of the α-
Particles

“If the high velocity and mass of the α-
particle be taken into account, it seems 
surprising that some of the α-particles, as the 
experiment shows, can be turned within a 
layer of 6 x 10-5 cm. of gold through an angle 
of 90o, and even more*. To produce a similar 
effect by a magnetic field, the enormous field 
of 109 absolute units would be required.”

* About 1 in 8000 reflected i.e.  θ  > 90o.

This work was done in Manchester about 18 
months after Rutherford had been appointed 
as Langsworthy Professorship of Physics 

The experiments required very good eyesight 
and a lot of patience – you were the readout!

“See if you can get some effect of α-particles
directly reflected from the surface” – fig (b)
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Reaction to the G-M experiment

• Rutherford’s reaction was one of astonishment 

• The ‘plum pudding’ model was totally inadequate

•  an α-particle with speed ~10000 km/sec hitting point-like electrons in the 

positive jelley and coming back at you??

    
• ‘It was quite the most incredible event that has ever happened in my life. It was 

almost as incredible as if you had fired a 15-inch shell at a piece of tissue paper 
and it came back and hit you.’

        (Robin Marshall, based on studies of archive material in Manchester, mentioned

          in a seminar recently that  Rutherford may not have said this – 

                                                              however it is well established in the ‘folk lore’!)
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Rutherford’s paper of 1911
The Scattering of α and β  Particles by Matter and the Structure of the Atom

2  is the angle of deflectionϕ π θ= −
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    -particle trajectory - hyperbola  
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Rutherford’s paper of 1911 – ‘cross-section’ 

2  is the angle of deflection

between the incoming and outgoing

asymptotic directions of the 
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Geiger & Marsden 1913 paper

Predictions of Rutherford’s formula tested:

Rn2 2 2  (emanation) source at R, diaphragm at D directed a 
pencil of  α-particles normally onto screen F, viewed thru’
telescope M 

‘…it can be calculated that the number of elementary charges composing the centre of
the atom is equal to half the atomic weight.’ 
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Test of Rutherford’s formula

4

Plots of the data from

the 1913 G-M paper

-particle scattering

from gold and silver foils

LH plot shows the

angular distributions

RH plot shows the

same data plotted 

against  sin ( / 2)

α

θ
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Moseley and X-ray spectra – ordering the elements

2
2 2

  Measured precision  X-ray spectra 

      - 1913  also in Manchester

   'Balmer' type formula for frequency

1 1
         (Z) = R(Z- )    

1 2

(Moseley died in World War I, aged 27)

ν σ

•

•

 −  

 vs Zν
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Consequences 

Bohr model and early quantum physics
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Bohr model for the H-atom - timeline

•  First decade 20th C - it still wasn’t known how many electrons an atom 
       contained – even  for Hydrogen (the simplest atom)

• Bohr visited Cambridge in 1911 hoping to work with  J J Thomson
- it didn’t work out, but Bohr did hear Rutherford talk about his nuclear atom
- he was also familiar with Thomson’s atomic model

• Bohr decided he must visit Manchester – which he did 1911-12
     - Bohr realised that an additional constraint was needed to determine the radius 
       of electron orbits in a ‘planetary’ model’

• Back in Copenhagen (1913) Bohr published his ‘trilogy’ of papers 
              On the Constitution of Atoms and Molecules
     - his key insight was to quantize the angular momentum of the electron
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Bohr model for the H-atom

• a single electron in orbit around the central
      nucleus, just one proton for H (Z=1)

• Coulomb 1/r2  force between positive charge e 
    (proton) and the negative charge of the electron 
          

• The radius of the orbit fixed by quantisation 
       of angular momentum

• Energies in ‘allowed’ orbits were then fixed and
      electrons did not radiate continuously

• Energy of photon emitted or absorbed given by
       difference in energy levels

                        A stunning success!

22

2 2
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1930s

• Dirac proposes the positron (1931)

• Discovery of neutron (1932, Chadwick, Joliot-Curie..)

• First nuclear process initiated by an accelerator (1932)

• Fermi theory of beta decay (1933)
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Rutherford, Thomson and research students; Cavendish Laboratory 1920

J Chadwick*

G P Thomson*     J J Thomson    Rutherford*    J A Crowther   A H Compton*

E V Appleton*

*Nobel prize 
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The need to get higher energies

2

min
0

 

  Firstly:  to overcome the  

      - for an -particle incident on a nucleus of charge , rad
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2
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r
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15

gives 32.6 MeV

  Secondly:   Quantum mechanics  

           - to probe 10  or less requires momenta (pc) of 200 MeV or mo

(

re  

)

m

pc x c
−

• ∆ ∆ ≥ h

“It would be of great scientific interest if it were possible to have a supply of
electrons… which the individual energy of motion is greater even than that
of of the alpha particle.”  [Ernest Rutherford, PRS, 30 Nov 1927]
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First accelerators: Van de Graaff  1929

• Ttransfer charge from a voltage source 
via a continuous belt to the spherical 
isolated upper terminal

• Belt: a flexible dielectric material, (e.g. 
silk), for small machines. For large 
devices the ‘belt’: isolated metal plates 
capable of holding larger charge on a 
flexible backing

• Maximum energy given by upper 
terminal voltage  (Typical Vmax of  25 
MV); also limited by height above ground 
(avoid ‘breakdown’)

• Very stable energies, so many nuclear 
physics laboratories had them

The Van de Graaff
    at Oxford  
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First accelerators: Cockcroft-Walton 1932

 Cockcroft-Walton 'voltage multiplier'  - built in 1937

   by Philips (Eindhoven) - now in the Science Museum

 Cockcroft and Walton used their device to  'split the atom': 

                           p

•

•
7

7

2

    protons, energy 0.12 MeV, incident on the  target at A

  Detector was a zinc-sulphide scintillator screen, B,

     viewed through the microscope

  The 's were identified by inserting mic

Li

Li

α

α

+ →

•

• a screens, C,  of

    known stopping power between the exit window and

    scintillator screen

microscope
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An early Cockcroft-Walton 

Left: Walton taking data (1931);  Right: Rutherford & John Ratcliffe (1932)
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First accelerators: cyclotron (E Lawrence) 1932

• Key idea – circular path allows fixed 
‘acceleration kick’ to be used many times

• High frequency alternating voltage 
applied across the D-shaped electrodes

• Inject at the centre - acceleration when 
crossing the gap between the ‘dees’

• Maximum energy at periphery – beam 
extracted onto target and detector

• Largest had 60 inch diameter giving 
protons and deuterons of 8 and 16 MeV

• BUT could not accommodate relativistic 
effects and energy loss by radiation

Lawrence had a talent for raising money to support his projects
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Late 1940s to present day

Brief mention of cosmic ray physics

Circular vs linear accelerators

Inside the nucleus and nucleon

Partons, quarks and gluons
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Cosmic rays (mountain observatories or balloons)

Pic du Midi Observatory (Pyrenees)

0 0

Before accelerators,  cosmic rays provided a source of 

very high energy protons and new particle discoveries :  

bottom left:   ‘V ’  in a cloud chamber photo (the K )

below: ,  captured in photograeπ µν νν→ → phic emulsion
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• Mark Oliphant (Australian), Vladimir Veksler (Russian), Edwin McMillan (USA) 
were the key players (working independently)

• Circular machines – fixed radius beam pipe within a ring of bending magnets –  no 
huge electromagnet which limited the cyclotron

•  Synchronize  accelerating voltage frequency and magnetic field strength with 
particle beam rotation – ‘phase stability’

• Oliphant built one of the first proton synchrotrons at Birmingham University (UK) – 
started operating in 1953 – energy 1 GeV

• McMillan - first electron synchrotron (300 MeV), 

                                                         then the Bevatron (1.8 BeV LBL)

• Rapidly adopted worldwide for particle physics, many are still in use 

–  both electrons (DESY) and protons (CERN PS)

The synchrotron



R Devenish HERA 5/7/2011 35

A little nostalgia – DESY  - 7.5 GeV electron synchrotron

February 24 1964: first beam at DESY!  Professor Willibald Jentschke toasts 

                              Drs Degele, Kumpfert and team in the accelerator control room 
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Protons or electrons?

• Acceleration of protons gives the highest beam energies (Tevatron and LHC)

 
• The electron (or positron) is a point-like lepton without structure 

• Many examples of electron synchrotrons (CEA, DESY, NINA…) and 

        e+e- colliders (Frascati (AdA), CEA, DORIS, PETRA, PEP, LEP 

• BUT, synchrotron radiation energy loss limits maximum energy 

• This is  avoided if the accelerator is linear

 
• Stanford linac then SLAC   (nuclear then particle physics, respectively)
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Stanford Linac Mk III

Details in   Rev. Sci. Inst. 26 134 (1955)

Initial maximum energy with 21 klystrons was 630 MeV
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Hofstadter and Nuclear Physics

Halfway station – 190 MeV spectrometer

Spectrometer is mounted on an obsolete gun 
mount turntable on loan from the US Navy

End station – 550 MeV spectrometer

2 2 2

Energy  and scattering angle 

 measured in both cases

Elastic scatter:     

3-momentum transfer q given by

   q 4 sin ( / 2)

E

E E

E

θ

θ

′

′ =

=
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Elastic scattering and nuclear charge density

• Typical angular distribution for eA
       elastic scattering
• Note the much faster decrease
       compared to a point charge

( ) 1/3  nuclear radius:   R 1.07 0.02  fm

  nuclear 'skin thickness':   2.4 0.3 fm  (constant)

A A• = ± ×

• ±
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Inelastic eA scattering

12 0

Left plot shows the scattered electron

energy for a 187 MeV incident beam

on C  measured at 80  at Stanford

   elastic peak 

   inelastic peaks from excited states 

       the first near 180 MeV relate

−
−

12

s to the

        4.43 MeV C level   

Right:  ;   E 4.878 GeV;  from DESY;   

W m  moving left the peaks are at the positions 

of the nucleon resonances starting with the (1232) 

spin 3/2, isospin 3/2 state

e

X

ep e X′→ =
≡

∆
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SLAC - 1969

2

20 GeV linear accelerator, plot shows

inelastic    scattering  

/  vs   (  is 4-momentum transfer)

for fixed values of  ;  the almost constant 

behaviour cannot be described by a 

ep e X elastic

X

ep e X

q q

M W

σ σ′→

′→

≡

15

uniform mass

distribution within a sphere of radius ~

Evidence for 'hard' (point-like) constitu

10

ents

m−
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Neutrinos - CDHS

max

  CDHS experiment neutrino 

deep inelastic scattering:  

         ( )N ( )X 

  E  200 GeV

 Detector: 19 modules

  toroidally magnetised iron plates

ν

ν ν µ µ− +

•

→
•
•

:
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Quark parton model for ‘deep’ inelastic scattering
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 2F   data from fixed targets and HERAp

BUT what is 
happening at 
small x values?
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QPM – problems 
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QCD enhanced parton model 

•  gluon – massless, spin 1 
•  gluons carry the colour charge of QCD
•  self-interact as well as coupling to quarks

•  the strong coupling αS (in analogy to 
             a (fine structure constant)
   decreases as the scale, Q2, increases

•  ‘Asymptotic freedom’ 

•  Perturbative QCD

• Evidence for the gluon?
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PETRA 1979 – discovery of the gluon 

JADE
PLUTO

TASSO 

Mark-J

The four experiments on PETRA, using different measures of ‘jetiness’
showed clearly that three jet events and jet broadening agreed quantitatively
with the predictions of QCD (quantum chromodynamics). 

 jetse e+ − →
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Conclusion

• Since 1911 ‘Rutherford scattering’ has been an indispensible tool

      for exploring the physics of the nucleus, then the nucleons 
• New ideas have been required – the most radical not yet completely understood 

was the development of quantum mechanics

• At times it appeared that the task was hopeless, but then a new order appears out 
of the chaos

• Improvements in instrumentation and  experiments have driven the subject

• It has been quite a century of achievement!

• We look forward to even greater surprises from the LHC.

Apologies to all those on experiments that I have not mentioned.
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EXTRAS
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e+e- annihilation at PETRA – 3-jet events 
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Mean quark (charges)2 in the nucleon
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HERA – the microscope

H1 detector
ZEUS detector

e-p collider
e+/- 27.5 GeV
p 920 GeV
Ecm= 318 GeV

Circumference
  ~ 11 km

CTD
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Hofstadter – electron spectrometer

End station – spectrometer moved
On a circular track about the target
- It weighed about 30 tonnes
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Bohr Model – more detail

2 2 2 2
2

2
0 0 0

      nucleus with positive charge Ze

      electrons in stable orbit of radius r, given by

1 1 1 1 1
                with energy  =   

4 2 4 2 4
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Bohr postulated the quantisation condition for 'stable' orbits:
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PETRA 1979 – discovery of the gluon II

TASSO

Mark-J
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Rutherford scattering
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Form-factor
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Sum rules  F2n
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n/p



R Devenish HERA 5/7/2011 60

QPM – problem?
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• XX
– Ss

• aa
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Kinematics for DIS

2

 Variable are not independent, at high energies, ignore masses

                                     

                 

Q sxy=
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