

# Higgs boson(s) at LHC (CMS)

#### A. Nikitenko, Imperial College Seminar in Hamburg and Zeuthen 15-16<sup>th</sup> March 2011





### J. J. Sakurai Prize for Theoretical Particle Physics 2010: (L to R) Kibble, Guralnik, Hagen, Englert, Brout, Higgs



"For elucidation of the properties of spontaneous symmetry breaking in four-dimensional relativistic gauge theory and of the mechanism for the consistent generation of vector boson masses."

## Higgs boson is the only not discovered particle in Standard Model

are all these brilliant theorists right about mechanism of generation of particle masses ?

#### LHC has been build manly for Higgs boson discovery



22m er: 15m 14'50

**+TOTEM** 

#### Phenomenology : Standard Model Higgs at LHC (I)



"Handbook for LHC Higgs Cross Sections" S. Dittmaier et al. arXiv 1101.0593

## SM Higgs boson couplings and Br. ratios

#### tree level couplings H $q_{Hff} = m_f / v = (\sqrt{2}G_u)^{1/2} m_f$ $\times$ (i) H $q_{HVV} = 2M_V^2/v = 2(\sqrt{2}G_\mu)^{1/2}M_V^2 \times (-ig_{\mu\nu})^{1/2}$ $\sim V^{\mu}$ $g_{HHVV} = 2M_V^2/v^2 = 2\sqrt{2}G_{\mu}M_V^2 \times (-ig_{\mu\nu})$ $\mathcal{V}_{V_{\nu}}$ H $g_{HHH} = 3M_H^2/v = 3(\sqrt{2}G_\mu)^{1/2} M_H^2$ $\times$ (i) $g_{HHHH} = 3M_{H}^{2}/v^{2} = 3\sqrt{2}G_{\mu}M_{H}^{2}$ $\times$ (i)

#### v is vev of Higgs field = 246 GeV

Right bottom plot includes uncertainties from the quark masses  $m_t$ ,  $m_b$ ,  $m_c$  and  $\alpha_s(M_z)$ 

Djouadi, Kalinowski, Spira bb ŴŴ ZZ0.1gg $c\bar{c}$ BR(H)0.010.001  $s\bar{s}$  $\mu\mu$  $Z\gamma$ 0.0001 100 130160200 300 500700 1000  $M_H$  [GeV]  $b\overline{b}$ WWBR(H) $0.1 \models \tau \tau$ ZZ $c\bar{c}$ gg0.01130 100110 120140150160 $M_H$  [GeV]

What is the mass of Higgs boson in Standard Model ?  $m_{H}^{2} = \lambda v^{2}$  – free parameter

#### SM Higgs mass constraints from the data and theory

#### Experiment



Theory uncertaint

 $--0.02758\pm0.00035$ 

---- 0.02749±0.00012 ---- incl. low Q<sup>2</sup> data

100

m<sub>н</sub> [GeV]

 $\Delta \alpha_{\rm had}^{(5)} =$ 

6

5

4

3

2

1

0

Excluded

 $\Delta\chi^2$ 

#### SM theory

The triviality (upper) bound and vacuum stability (lower) bound as function of the cut-off scale  $\Lambda$ "triviality" : Higgs self-coupling remains finite



# **Tevatron exclusions of SM Higgs**



# ATLAS /CMS projections for SM Higgs boson exclusion





| Channels included                       | Higgs mass range<br>used in analyses (GeV) |
|-----------------------------------------|--------------------------------------------|
| Н→үү                                    | 115-150                                    |
| VBF H→ττ                                | 115-145                                    |
| VH, H $\rightarrow$ bb (highly boosted) | 115-125                                    |
| VH, H→WW→lvjj                           | 130-200                                    |
| H→WW→2l2v + 0/1 jets                    | 120-600                                    |
| VBF H→WW→2l2v                           | 130-500                                    |
| H→ZZ→4I                                 | 120-600                                    |
| H→ZZ→2l2v                               | 200-600                                    |
| H→ZZ→2l2b                               | 300-600                                    |



## Prospects for CMS SM Higgs boson discovery with at 7 TeV



## Ultimate performance at 14 TeV (CMS PTDR 2006)

#### Difficult low mass region (~ 115 – 120 GeV): H->γγ, VBF H->ττ, VH, H->bb (new)



# CMS H->WW->lvlv with 36 pb<sup>-1</sup> (I)

#### **Basic "WW" Selections**

- Two opposite sign leptons e or μ p<sub>T</sub> > 20 GeV
- m<sub>II</sub> > 12 GeV
- DY rejection
  - $|m_{||} m_{z}| > 15 \text{ GeV}$
  - E<sub>T</sub> <sup>proj. miss</sup> > 20 (35) GeV for eμ (ee, μμ)
- tt~ and tW rejection
  - no jets with  $E_T > 25$  GeV
  - no soft muons and b-tagged jets E<sub>T</sub> < 25 GeV</li>



# CMS H->WW->lvlv with 36 pb<sup>-1</sup> (II)

### • Higgs boson selections:

| $m_{\rm H}$        | $p_{\rm T}^{\ell,{\rm max}}$ (GeV/c) | $p_{\rm T}^{\ell,{\rm min}}$ (GeV/c) | $m_{\ell\ell} ({ m GeV}/c^2)$ | $\Delta \phi_{\ell\ell}$ (degree) |
|--------------------|--------------------------------------|--------------------------------------|-------------------------------|-----------------------------------|
| $(\text{GeV}/c^2)$ | >                                    | >                                    | <                             | <                                 |
| 130                | 25                                   | 20                                   | 45                            | 60                                |
| 160                | 30                                   | 25                                   | 50                            | 60                                |
| 200                | 40                                   | 25                                   | 90                            | 100                               |
| 210                | 44                                   | 25                                   | 110                           | 110                               |
| 400                | 90                                   | 25                                   | 300                           | 175                               |

#### • Signal and bkg. after all selections:

| $m_H$ (GeV/ $c^2$ ) | data | $\begin{array}{c} SM \\ H \rightarrow W^+W^- \end{array}$ | $\begin{array}{c} SM \text{ with 4th gen.} \\ H \rightarrow W^+W^- \end{array}$ | all bkg.        | $qq {\rightarrow} W^+ W^-$ | $gg{\rightarrow}W^+W^-$ | all non-<br>W <sup>+</sup> W <sup>-</sup> |
|---------------------|------|-----------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|----------------------------|-------------------------|-------------------------------------------|
|                     |      |                                                           | cut-bas                                                                         | ed approach     |                            |                         |                                           |
| 130                 | 1    | $0.30 \pm 0.01$                                           | $1.73 \pm 0.04$                                                                 | $1.67 \pm 0.10$ | $1.12 \pm 0.01$            | $0.10 \pm 0.01$         | $0.45 \pm 0.10$                           |
| 160                 | 0    | $1.23 \pm 0.02$                                           | $10.35 \pm 0.16$                                                                | $0.91\pm0.05$   | $0.63 \pm 0.01$            | $0.07 \pm 0.01$         | $0.21 \pm 0.05$                           |
| 200                 | 0    | $0.47\pm0.01$                                             | $3.94 \pm 0.07$                                                                 | $1.47\pm0.09$   | $1.13 \pm 0.01$            | $0.12\pm0.01$           | $0.23 \pm 0.09$                           |
| 210                 | 0    | $0.34 \pm 0.01$                                           | $2.81 \pm 0.07$                                                                 | $1.49 \pm 0.05$ | $1.09 \pm 0.01$            | $0.10 \pm 0.01$         | $0.30 \pm 0.05$                           |
| 400                 | 0    | $0.19\pm0.01$                                             | $0.84\pm0.01$                                                                   | $1.06\pm0.03$   | $0.79\pm0.01$              | $0.04\pm0.01$           | $0.23 \pm 0.03$                           |

## CMS H->WW->lvlv with 36 pb<sup>-1</sup> (III)

#### • Signal and bkg. systematics:

|                                   | Relative Uncertainty (%) |                         |                         |       |     |                                        |          |
|-----------------------------------|--------------------------|-------------------------|-------------------------|-------|-----|----------------------------------------|----------|
| Source                            | $H \rightarrow W^+W^-$   | $qq \rightarrow W^+W^-$ | $gg \rightarrow W^+W^-$ | WZ/ZZ | top | $Z/\gamma^* \rightarrow \ell^+ \ell^-$ | W + jets |
| Luminosity                        | 11                       | _                       | _                       | 11    |     | _                                      |          |
| Trigger efficiencies              | 1.5                      | 1.5                     | 1.5                     | 1.5   | —   | —                                      | _        |
| Muon efficiency                   | 0.7                      | 0.7                     | 0.7                     | 0.7   | —   | —                                      | _        |
| Electron id efficiency            | 2.4                      | 2.4                     | 2.4                     | 2.4   | —   | _                                      | _        |
| Reconstruction efficiency         | 1.4                      | 1.4                     | 1.4                     | 1.4   | —   | —                                      | _        |
| momentum scale                    | 1.3                      | 1.3                     | 1.3                     | 1.5   | —   | _                                      | _        |
| pile-up                           | 0.5                      | 0.5                     | 0.5                     | 0.5   | —   | —                                      | _        |
| $E_{\rm T}^{\rm miss}$ resolution | 1.0                      | 1.0                     | 1.0                     | 1.0   | 1.0 | 3.0                                    | _        |
| Jet veto                          | 5.3                      | _                       | 5.4                     | 5.4   | —   | _                                      | _        |
| PDF uncertainties                 | 3.0                      | 2.6                     | _                       | 2     | —   | _                                      | _        |
| NLO effects                       | 2.0                      | 1.1                     | _                       | 3.5   | —   | _                                      | _        |
| Fakes                             | —                        | —                       | —                       | —     | —   | —                                      | 50       |
| WZ/ZZ cross-section               | _                        | _                       | _                       | 3.0   | —   | _                                      | _        |
| $qq \rightarrow WW$ normalization | _                        | 55                      | —                       | —     | —   | —                                      | _        |
| $gg \rightarrow WW$ normalization | _                        | _                       | 50                      | —     | —   | _                                      | _        |
| t X normalization                 | —                        | —                       | —                       | —     | 100 | —                                      | —        |
| DY normalization                  | _                        | _                       | _                       | —     | —   | 100                                    |          |
| statistics                        | 1                        | 1                       | 1                       | 4     | 6   | 50                                     | 30       |

#### Generators used:

- Higgs, DY: POWHEG+PYTHIA
- qq->WW, tt, tW, W+jets: MadGraph
- gg->WW : GG2WW (T.Binoth et all)
- WZ,ZZ : PYTHIA

# CMS H->WW->lvlv with 36 pb<sup>-1</sup> (IV)

- In SM with 4<sup>th</sup> generation
  - EPJ C(2010) 66:119 (2010),
  - arXiv:1011.4484v2 (2010)

## Higgs boson is excluded in region M<sub>H</sub> = (144-207) GeV



| $m_{\rm H}$        | $\sigma \cdot BR$ | $\sigma \cdot BR$ | lim. obs.      | lim. exp.      | lim. obs.      | lim. exp.      |
|--------------------|-------------------|-------------------|----------------|----------------|----------------|----------------|
| $(\text{GeV}/c^2)$ | SM (pb)           | 4th gen. (pb)     | cut-based (pb) | cut-based (pb) | BDT-based (pb) | BDT-based (pb) |
| 130                | 0.45              | 2.66              | 6.30           | 8.07           | 5.66           | 6.57           |
| 160                | 0.90              | 7.54              | 2.29           | 3.22           | 1.93           | 2.72           |
| 200                | 0.42              | 3.50              | 2.80           | 4.59           | 2.32           | 3.72           |
| 210                | 0.37              | 3.04              | 3.41           | 5.53           | 2.76           | 4.43           |
| 400                | 0.13              | 0.55              | 2.08           | 3.12           | 1.94           | 2.93           |

# ATLAS H->WW->lvlv with 36 pb<sup>-1</sup>



# Discovery is not the end, but just beginning of "Higgs story"

Want to measure Higgs boson properties

#### Accuracy of the Higgs boson mass measurement with H->ZZ->4I and H->γγ



# Why Higgs boson mass should be known with great precision ?

 In MSSM - to constrain other parameters , especially from top/stop sector via the loop corrections



S. Heinemeyer at al. hep-ph/9909540

 In SM: 1-2 GeV is enough to compare measured Higgs couplings with SM predictions at a given M<sub>H</sub>

S. Heinemeyer at al. hep-ph/0306181

1000

### Measurement of Higgs boson couplings and qqH associated production (Weak Boson Fusion: VV->H)



## Why VBF (qq->qqH) channels are very important ?

- Significantly extend the possibility of Higgs coupling measurements
- Provide possibility of the indirect measurement of the light Higgs boson width
  - D. Zeppenfeld, R. Kinnunen,
     A. Nikitenko and E. Richter-Waz, Phys.Rev. D62 (2000) 013009
  - M. Duehressen et al., Phys.Rev. D70 (2004) 113009

H->ττ: the way to measure Higgs coupling to down type fermions; Important in MSSM



#### Jet veto ("rapidity gap") in VBF (WW->H) production first discussed in :

Yu. Dokshitzer, V. Khoze and S. Troyan, Sov.J.Nucl. Phys. 46 (1987) 712 Yu. Dokshitzer, V. Khoze and T. Sjostrand, Phys.Lett., B274 (1992) 116

#### From D. Zeppenfeld talk on TeV4LHC, 2004





### ... planning to make rapidity gap studies this year

#### What can $1 fb^{-1}$ tell us about our perturbative tools



1 *fb*<sup>-1</sup>@7TeV could be enough to tell the predictions apart! Obviously, similar results for pure dijets with much less data

Jeppe R. Andersen (CERN)

Hard Radiation at a High Energy Collider

# Full simulation analysis of qqH, H->ττ->l+jet at LHC 14 TeV



#### **Discovery in Standard Model**

| M <sub>H</sub> [ GeV ]                                           | 115                  | 125                  | 135                  | 145                  |
|------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|
| Production $\sigma$ [fb]                                         | $4.65 \times 10^{3}$ | $4.30 \times 10^{3}$ | $3.98 \times 10^{3}$ | $3.70 \times 10^{3}$ |
| $\sigma \times BR(H \rightarrow \tau \tau \rightarrow lj)$ [fb]  | 157.3                | 112.9                | 82.38                | 45.37                |
| $ m N_S$ at 30 fb $^{-1}$                                        | 10.5                 | 7.8                  | 7.9                  | 3.6                  |
| $ m N_B$ at 30 fb $^{-1}$                                        | 3.7                  | 2.2                  | 1.8                  | 1.4                  |
| Significance at 30 fb <sup>-1</sup> ( $\sigma_{\rm B}$ = 7.8%)   | 3.97                 | 3.67                 | 3.94                 | 2.18                 |
| Significance at 60 fb <sup>-1</sup> ( $\sigma_{\rm B} = 5.9\%$ ) | 5.67                 | 5.26                 | 5.64                 | 3.19                 |

#### **Measurement of Higgs boson couplings and H->bb**



VH, H->bb;  $p_T^H$  > 200 GeV, 30 fb<sup>-1</sup> at 14 TeV

#### ATL-PHYS-PUB-2003/030

traditional ttH, H->bb was "dead" since CMS-TDR (same for ATLAS)

- **Re-incarnation with** 
  - "boosted" H->bb in VH analysis;
    - Butterworth at al, 2008
  - "boosted top" in ttH, H->bb

• Plehn at al, 2010



#### Higgs CP property: need > 200 fb<sup>-1</sup>

• Using H->ZZ->4I (M. Muhlleitner, R. Godbole, D. Miller, ...)



• Using H+jj,  $\Delta \phi$  jj correlation (D. Zeppendeld, J.R. Andersen, ...)



The ultimate goal of Higgs physics: measure Higgs boson "self-coupling" value  $\lambda = m_{H}^{2} / v^{2}$ , parameter of Higgs boson potential  $V(\Phi) = = -\lambda v^{2} (\Phi^{+}\Phi) + \lambda (\Phi^{+}\Phi)^{2}$ 

## using H->HH

#### - LHC can not do it. Need linear collider



$$g_{HHH} = 3M_H^2/v = 3(\sqrt{2}G_\mu)^{1/2}M_H^2 \times (i)$$

## **Searches for MSSM Higgs bosons**



- φ->ττ, μμ
  H<sup>+</sup>->τν, CS

## **Preparation for pp->φ+X, φ->ττ discovery**





Imperial College London

#### $\sigma$ (pp $\rightarrow$ ZX) BR(Z $\rightarrow \tau\tau$ ) = 1.00 ± 0.05 (stat) ± 0.08 (syst) ± 0.11 (lumi) nb



## **SUSY H->**ττ with **36pb**<sup>-1</sup>

- Fit of  $\tau\tau$  mass shape for  $\mu\tau_{had}$ ,  $e\tau_{had}$ ,  $e\mu$  final states
- Background normalization from data
- QCD, Z->II shapes from data



use SUSY Higgs cross-section from LHC XS group report and Br from HeynHiggs

# Limits on σ x Br(H->ττ)

•  $\sigma^{gg->A} \varepsilon^{gg->A}_{sel} + \sigma^{bbA} \varepsilon^{bbA}_{sel} < N_{H}$ •  $\varepsilon^{gg->A}_{sel} = \varepsilon^{bbA}_{sel}$  within 2-10 % using PYTHIA MC -  $(\sigma^{gg->A} + \sigma^{bbA}) \varepsilon_{sel} < N_{H}$ 

top-loop vs b-loop in gg->h :







# ATLAS exclusion in $M_A$ -tan $\beta$



# **Preparation for pp->bbφ, φ->**ττ **discovery**

#### "Discover" Z+b as "benchmark" for φ+b



#### Different MCs for b(b)H production gives different predictions: => need bbZ data to tune/verify Monte Carlo

Campbell, Kalinowski and Nikitenko; Les Houches 2005 hep-ph/0604120



PYTHIA gg->bbH describes p<sub>T</sub><sup>b</sup> spectra at NLO within 5-10 %; Kinnunen, Lehti, Moortgat, Nikitenko, Spira. Eur.Phys.J. C40n5:23-32,2005

# want to measure Z + 1(2) b + X

#### at least 1 b tagged jet

- Campbell, Ellis, Maltoni, Willenbrock, McElmurry hepph/0312024, hep-ph/0505014. m<sub>b</sub> = 0
- at least two jets with at least 1 b-tagged jets
  - Campbell, Ellis, Maltoni, Willenbrock hep-ph/0510362, m<sub>b</sub>=0

#### at least two jets with 2 b-tagged

- Cordero, Reina, Wackeroth arXiv:0906.1923 [hep-ph], massive b
- ME+PS generator preselections (discussed with F. Krauss, M. Mangano, F. Maltoni):
  - LO pp->bbZ with massive b;  $p_T^{\ b} > 15$  GeV for at least one b.
  - Need corresponding  $\sigma$  NLO, L. Reina, F. Cordero work in progress

# Z+b in CMS with 36 pb<sup>-1</sup> at 7 TeV

- First observation of Z+b at LHC
  - 65 evens with single b-tag jet p<sub>T</sub>>25 GeV, |η|<2.1 (~ 83 % of Z+b)</p>
- Good agreement with theory/MC for Z+b/Z+j ratio



## Discovery reach with 30 fb<sup>-1</sup> at 14 TeV

ATLAS  $\phi \rightarrow \tau \tau$ 

**CMS** φ->ττ, μμ



## tan(β) "measurement" with MSSM bbφ

#### with $\phi > \tau \tau$ using cross-section measurement; with $\phi > \mu \mu$ using $\phi$ width (CMS PTDR)



In bb $\phi$ ,  $\phi$ -> $\tau\tau$  we used  $\Delta\sigma_{th}$ =20%,  $\Delta Br=3%$ (new: Noth, Spira 2010, NNLO SUSY QCD/EWK :  $\Delta Br(\phi$ -> $\tau\tau$ ) ~ 1 %)

#### **New ATLAS MC studies for light H+->cs, τν** ATL-PHYS-PUB-2010-009, L=1 fb<sup>-1</sup> at 7 TeV

tt->WbH+b->lvb+csb





- tt->WbH+b->lvb+τvb
   τ->lvv
- New variables to separate signal from bkg.:
  - Helicity angle,  $\cos \theta_{I}^{*}$
  - generalized transverse mass m<sub>T2</sub><sup>H+</sup>



## t->H<sup>+</sup>b, H<sup>+</sup>-> $\tau\nu$ in CMS with 36 pb<sup>-1</sup> at 7 TeV



The 5 σ discovery reach of CMS 2006 (PTDR)for MSSM charged Higgs bosons with  $m_h^{max}$  scenario.PTDR 2006: NLO cross-section,<br/>but no SUSY QCD correctionsPost PTDR update 2008<br/>with Weiglein and Heinemeyer



 Dittmaier, Kramer, Spira, Walser 2009: CMS reach for pp->tbH<sup>+</sup>, H<sup>+</sup>->τν in SPS 1b scenario: *effect of cross-section uncertainty on discovery reach*

### Is H<sup>+</sup>-> $\tau\nu$ (and $\phi$ -> $\tau\tau$ ) discovery region already excluded by B-> $\tau\nu_{\tau}$ ?



#### Can MSSM be distinguished from SM if only one, light Higgs is discovered ?



### I did not say about CMS/ATLAS studies on

- NMSSM H<sub>1</sub>->a<sub>1</sub>a<sub>1</sub>->ττττ
   arXiv:0805.3505 [hep-ph], arXiv:0801.4321[hep-ph]
- H<sup>++</sup>H<sup>--</sup> -> llll (l= μ, τ) CMS 2010 data analysis
- NMSSM a1->μμ ATLAS 2010 data analysis
- 5D Randall-Sundrum model: φ->hh->γγ /ττ +bb

## Conclusions

## ATLAS and CMS start producing first results for Higgs physics this year !

# **THE END**

| Process                                     | $\mu \tau_h$   | $e\tau_h$       | еµ              |
|---------------------------------------------|----------------|-----------------|-----------------|
| $Z \rightarrow \tau \tau$                   | 329±77         | $190 \pm 44$    | 88±5            |
| tī                                          | 6±3            | $2.6 \pm 1.3$   | 7.1±1.3         |
| $Z \to \ell \ell$ , jet $\to \tau_h$        | $6.4{\pm}2.4$  | $15 \pm 6.2$    |                 |
| $Z \to \ell \ell, \ell \to \tau_h$          | $13.3 \pm 3.6$ | $119 \pm 28$    |                 |
| $W  ightarrow \ell  u$                      | $54.9 \pm 4.8$ | $30.6 \pm 3.1$  |                 |
| $W \rightarrow \tau_{\ell} \nu$             | $14.7 \pm 1.3$ | $7.0 \pm 0.7$   | 3.9±1.2         |
| QCD                                         | $132 \pm 14$   | $181 \pm 23$    |                 |
| WW/WZ/ZZ                                    | $1.6 \pm 0.8$  | $0.8 {\pm} 0.4$ | $3.0 {\pm} 0.4$ |
| Total                                       | $558 \pm 79$   | $546 \pm 57$    | $102\pm 5$      |
| Observed                                    | 540            | 517             | 101             |
| Signal Efficiency ( $m_A$ =120 GeV/ $c^2$ ) | 0.0253         | 0.0156          | 0.00561         |

#### Uncertainty on yields

| Source                                        | $\tau_{\mu} \tau_{had}$ | $\tau_e \tau_{had}$     | $\tau_e \ \tau_\mu$ |  |  |
|-----------------------------------------------|-------------------------|-------------------------|---------------------|--|--|
| trigger                                       | $0.971 \pm 0.002$       | 0.971±0.002 0.959±0.022 |                     |  |  |
| lepton identification and isolation           | $0.992 \pm 0.004$       | 0.992±0.004 0.968±0.035 |                     |  |  |
| $\tau_{had}$ identification                   | 1.00±                   | -                       |                     |  |  |
| efficiency of OS, $M_T$ and $2nd$ lepton veto | 1.00±0.02               |                         |                     |  |  |
| acceptance due to $\tau_{had}$ JES, 3 %       | 2.7                     | -                       |                     |  |  |
| acceptance due to e energy scale, 1 %         | - 1%                    |                         | 1%                  |  |  |
| acceptance due to $\mu$ momentum scale, 1%    | 1 %                     | 1%                      |                     |  |  |
| luminosity uncertainty                        | 11 %                    |                         |                     |  |  |

can move to 4%

#### Uncertainty on shapes

- tau (3%), muon (1%) and electron (2%) scales
- Missing transverse energy via jets scale (3%) and unclustered energy (10%)

#### Higgs CP property with H->ZZ->4l

d  $\Gamma(\eta) \sim H + \eta I + \eta^2 A$ , H scalar, A – pseudoscalar,  $\eta$ =tan( $\xi$ ),  $\xi$ = +/-  $\pi/2$  --> A







# Uncertainties involved in the tan(β) measurement

At large tan( $\beta$ ),  $\sigma$  x Br ~ tan<sup>2</sup>( $\beta$ )<sub>eff</sub> f(M<sub>A</sub>) at fixed  $\mu$ , M<sub>2</sub>, A<sub>t</sub>, M<sub>SUSY</sub>

 $N_s = tan^2(\beta)_{eff} f(M_A) L \epsilon_{sel}$ 

 $\tan(\beta) = \tan(\beta)_{mes} + - \Delta_{stat} + - \Delta_{syst} + - \Delta_{MCgen}$ 

 $\Delta_{syst} = 0.5 \ sqrt(\Delta L^2 + \Delta \sigma_{th}^2 + \Delta Br_{th}^2 + \Delta \sigma(\Delta M_H)^2 + \Delta \varepsilon_{sel}^2 + \Delta B^2)$ 

 $\Delta \sigma_{th} = 20$  % due to NLO scale dependence  $\Delta Br_{th} = 3$  % uncertainties of SM input parameters  $\Delta L = 5$  % luminosity uncertainty  $\Delta \sigma (\Delta M_{H}) = 10-12$  % due to mass measurement at 5 $\sigma$  discovery limit  $\Delta B = \Delta N_{B} / N_{S} = 10$  % at 5 $\sigma$  discovery limit (preliminary)

$$\Delta \varepsilon_{sel}^{2} = \Delta \varepsilon_{calo}^{2} + \Delta \varepsilon_{b tag}^{2} + \Delta \varepsilon_{\tau tag}^{2}$$
  
$$\Delta \varepsilon_{b tag} = 2.0 \% \text{ (preliminary)}$$
  
$$\Delta \varepsilon_{\tau tag} = 2.5 \% \text{ (preliminary)}$$
  
$$\Delta \varepsilon_{calo} = 2.9 \% \text{ (preliminary)}$$

# Uncertainties involved in the tan(β) measurement

At large tan( $\beta$ ),  $\sigma$  x Br ~ tan<sup>2</sup>( $\beta$ )<sub>eff</sub> f(M<sub>A</sub>) at fixed  $\mu$ , M<sub>2</sub>, A<sub>t</sub>, M<sub>SUSY</sub>

 $N_s = tan^2(\beta)_{eff} f(M_A) L \epsilon_{sel}$ 

 $\tan(\beta) = \tan(\beta)_{mes} + - \Delta_{stat} + - \Delta_{syst} + - \Delta_{MCgen}$ 

 $\Delta_{syst} = 0.5 \ sqrt(\Delta L^2 + \Delta \sigma_{th}^2 + \Delta Br_{th}^2 + \Delta \sigma(\Delta M_H)^2 + \Delta \varepsilon_{sel}^2 + \Delta B^2)$ 

 $\Delta \sigma_{th} = 20$  % due to NLO scale dependence  $\Delta Br_{th} = 3$  % uncertainties of SM input parameters  $\Delta L = 5$  % luminosity uncertainty  $\Delta \sigma (\Delta M_{H}) = 10-12$  % due to mass measurement at 5 $\sigma$  discovery limit  $\Delta B = \Delta N_{B} / N_{S} = 10$  % at 5 $\sigma$  discovery limit (preliminary)

$$\Delta \varepsilon_{sel}^{2} = \Delta \varepsilon_{calo}^{2} + \Delta \varepsilon_{b tag}^{2} + \Delta \varepsilon_{\tau tag}^{2}$$
  
$$\Delta \varepsilon_{b tag} = 2.0 \% \text{ (preliminary)}$$
  
$$\Delta \varepsilon_{\tau tag} = 2.5 \% \text{ (preliminary)}$$
  
$$\Delta \varepsilon_{calo} = 2.9 \% \text{ (preliminary)}$$

### MSSM gg->bbA/H, A/H-> $2\tau$ : accuracy of tan( $\beta$ ) measurement



## CMS expectations for Z+1b at 7 TeV (rescaling of 10 TeV result)

A.M. Magnan, A. Nikitenko . CMS Analysis Note 2010/027 A. Nayak, T. Aziz, A. Nikitenko, CMS Analysis Note 2008/020

- 2*l* p<sub>T</sub> > 20 GeV, |η|<2.1
- E<sub>T</sub><sup>miss</sup> < 40 GeV
- >= 1 b-jet,  $E_T$ >15 GeV,  $|\eta| < 2.1$
- N<sub>s</sub> = 84 ev.
- Background:
  - *Z*+*jets:* 39 *ev*.
  - Z+cc: 14 ev
  - tt~: 15 ev



# The 5 $\sigma$ discovery reach of CMS 2003 for MSSM charged Higgs bosons with m<sub>h</sub><sup>max</sup> scenario.

CMS Note 2003/033

NLO cross section for pp->tH<sup>-</sup> +X



NLO cross section (no  $\Delta_b$  SUSY corrections) : T. Plehn et al., hep-ph/0312286