

From PDFs and Heavy Quarks at HERA to the LHC

Katerina Lipka, DESY

DESY Seminar February 2011

100 Years Ago...

Scattering experiments provide insight into the matter structure

E. Rutherford, F.R.S.* *Philosophical Magazine* Series 6, vol. 21 May 1911, p. 669-688

The Scattering of α and β Particles by Matter and the Structure of the Atom

Considering the evidence as a whole, it seems simplest to suppose that the atom contains a central charge distributed through a very small volume, and that the large single deflexions are due to the central charge as a whole, and not to its constituents.

* Communicated by the Author. A brief account of this paper was communicated to the Manchester Literary and Philosophical Society in February, 1911.

Atom : Electrons + Nucleus

nucleons: protons, neutrons

mass $M_N \sim 1 \text{ GeV}$

Atom : Electrons + Nucleus

Feynman's Parton Model

- The nucleon is made up of point-like constituents (partons)
- Partons behave incoherently
- Probability f(x) for a parton f to carry the fraction x of the nucleon momentum is an intrinsic property of the nucleon, i.e. process independent

Learn about the nucleon structure via lepton-nucleon scattering

Feynman's Parton Model

- The nucleon is made up of point-like constituents (partons)
- Partons behave incoherently
- Probability f(x) for a parton f to carry the fraction x of the nucleon momentum is an intrinsic property of the nucleon, i.e. process independent

Learn about the nucleon structure via lepton-nucleon scattering

Electron-proton scattering in parton picture

Electron scatters off a charged constituent (parton) of the proton

Identify the charged partons with quarks

Hadron - Electron Ring Accelerator

days of running

End of running 30/6/07

HERA Collider Experiments

Collider experiments H1 & ZEUS $\sqrt{s_{max}}$ = 318 GeV

Integrated luminosity $\sim 0.5 \, fb^{-1}$ / experiment

ep Scattering at HERA

Deep Inelastic Scattering

Scatter both electron/positrons

Neutral Current: γ , Z^0 exchange

Charged Current: W[±] exchange

ep Scattering at HERA

Deep Inelastic Scattering

γ, Z : Neutral Current $ep \rightarrow e X$

Scatter both electron/positrons

Neutral Current: γ , Z^0 exchange

Charged Current: W[±] exchange

ep Scattering at HERA

Deep Inelastic Scattering

Scatter both electron/positrons Neutral Current: γ , Z^0 exchange Charged Current: W^{\pm} exchange

γ, Z : Neutral Current $ep \rightarrow e X$

γ exchange

Kinematics: $x=-q^2/2p \cdot q$ Bjorken scaling

γ exchange e^{\pm} k k' q = k - k' γ^{*} $P_q = xP_p$ p P_p

Kinematics: $x=-q^2/2p \cdot q$ Bjorken scaling

Infinite proton momentum frame:

partons do not interact, move parallel to the proton, massless, no transverse momentum parton *i* carries fraction x_i of P_p

γ exchange

Kinematics: $x=-q^2/2p \cdot q$ Bjorken scaling $Q^2 = -q^2$ photon virtuality

 γ exchange

4-momentum transfer Q^2 defines distance scale *r* at which proton is probed

Kinematics: $x=-q^2/2p \cdot q$ Bjorken scaling $Q^2 = -q^2$ photon virtuality

 $r \approx \hbar c/Q = 0.2[fm]/Q[GeV]$

DIS Cross Section and Proton Structure

E.g. for Neutral Current: $e^{\pm}p \rightarrow e^{\pm}X$

measured

dominant contribution

$$\underbrace{ \frac{d^2 \sigma^{e^{\pm}p}}{dx dQ^2}}_{y: \text{ transferred photon energy fraction}} \propto \frac{2\pi \alpha^2}{xQ^4} \begin{bmatrix} (1 + (1 - y)^2 F_2 - y^2 F_L \mp xF_3] \\ y: \text{ transferred photon energy fraction} \end{bmatrix}$$

Quark-Parton Model:
$$F_2 \propto x \sum_f q_f + \bar{q_f}$$

Parton Distribution Functions (PDFs):

probability to find a parton q in a proton carrying fraction x of it's momentum

Bjorken scaling: if partons do not interact, q=q(x); $F_2=F_2(x)$

QuantumChromoDynamics Picture

Quarks do interact via gluon exchange. Probability via splitting functions:

Interpretation of PDFs: number of partons in the proton, carrying momentum between *xP* and *(x+dx)P*, as resolved at *Q*². $F_2(x) \rightarrow F_2(x, Q^2)$, $q(x) \rightarrow q(x, Q^2)$

QuantumChromoDynamics Picture

Quarks do interact via gluon exchange. Probability via splitting functions:

Interpretation of PDFs: number of partons in the proton, carrying momentum between *xP* and *(x+dx)P*, as resolved at *Q*². $F_2(x) \rightarrow F_2(x, Q^2)$, $q(x) \rightarrow q(x, Q^2)$

Additional dependence on Q^2 quantitatively described in perturbative QCD via Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) Evolution Equations

$$\frac{\partial q(x,Q^2)}{\partial lnQ^2} \propto \int_x^1 \frac{dz}{z} \left[q(z,Q^2) P_{qq}\left(\frac{x}{z}\right) + g(z,Q^2) P_{qg}\left(\frac{x}{z}\right) \right]$$
$$\frac{\partial g(x,Q^2)}{\partial lnQ^2} \propto \int_x^1 \frac{dz}{z} \left[q(z,Q^2) P_{gq}\left(\frac{x}{z}\right) + g(z,Q^2) P_{gg}\left(\frac{x}{z}\right) \right]$$

Quark and gluon distributions coupled in DGLAP equations

Scaling Violations at Highest Precision

JHEP 01 (2010) 109: combined H1 and ZEUS data from HERA I, L~115 pb⁻¹

H1 and ZEUS data averaged:

- global fit of 1402 measurements
- 110 sources of systematic errors
- account for systematic correlations (cross calibration of experiments)
- total uncertainty: 1-2%for $Q^2 < 500 \ GeV^2$
- covered kinematics: 10⁻⁷<x<0.65 0.05<Q²<30000 GeV²

Scaling Violations at Highest Precision

JHEP 01 (2010) 109: combined H1 and ZEUS data from HERA I, L~115 pb⁻¹

Determination of Parton Density Functions

Structure function factorization: for an exchange-Boson $V(\gamma, Z, W^{\pm})$

$$F_2^V(x,Q^2) = \sum_{i=q,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z},Q^2,\mu_F,\mu_R,\alpha_S) \times f_i(z,\mu_F,\mu_R)$$

determined using measured cross sections calculable in pQCD

PDF

x-dependence of PDFs is not calculable in perturbative QCD:

- > parameterize at a starting scale $Q_0^2 : f(x) = Ax^B(1-x)^C(1+Dx+Ex^2)$
- \triangleright evolve these PDFs using DGLAP equations to $Q^2 > Q^2_0$
- construct structure functions from PDFs and coefficient functions: predictions for every data point in (x, Q^2) – plane
- > χ^2 fit to the experimental data

HERA Parton Density Functions

PDFs determined from the QCD fit to the NC and CC cross sections

Gluons and sea quarks: dominant partons at low x

HERA DIS Cross Sections vs HERAPDF

QCD using HERAPDF describes HERA NC and CC data very well

PDFs From HERA to Tevatron and the LHC

PDFs obtained from data of fixed target, HERA, Tevatron

HERA measurements:

covers most of the (x, Q^2) plane, best constrain at low, medium x

PDFs From HERA to Tevatron and the LHC

PDFs obtained from data of fixed target, HERA, Tevatron

HERA measurements:

covers most of the (x, Q^2) plane, best constrain at low, medium x

> From HERA to kinematics of Tevatron, LHC: evolution in *Q*² via DGLAP

HERAPDF vs Jets at Tevatron

Prediction based on HERAPDF

in agreement with Tevatron

W and Z Production at Tevatron

Prediction based on HERAPDF agrees very well with Tevatron data

Benchmarking PDFs: LHC Cross Sections

Dominant uncertainty on HERAPDF1.0 (parameterization) not accounted for in most PDFs

Differences between the PDF groups:

- data used in the fit and estimation of uncertainties
- different treatment of heavy quarks

Factorization:
$$F_2^V(x,Q^2) = \sum_{i=I,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z},Q^2,\mu_F,\mu_R,\alpha_S) \times f_i(z,\mu_F,\mu_R)$$

i - number of active flavours in the proton: defines the factorization (HQ) scheme

Factorization:
$$F_2^V(x,Q^2) = \sum_{i=1,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z},Q^2,\mu_F,\mu_R,\alpha_S) \times f_i(z,\mu_F,\mu_R)$$

i - number of active flavours in the proton: defines the factorization (HQ) scheme

• *i* fixed : Fixed Flavour Number Scheme (FFNS)

only light flavours in the proton: i = 3 (4)

c- (b-) quarks massive, produced in boson-gluon fusion

 $Q^2 \gg m_{HQ}^2$: can be less precise, NLO coefficients contain terms ~ $ln(\frac{Q}{m_{HQ}})$

Factorization:
$$F_2^V(x, Q^2) = \sum_{i=1, \bar{q}, g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z}, Q^2, \mu_F, \mu_R, \alpha_S) \times f_i(z, \mu_F, \mu_R)$$

i - number of active flavours in the proton: defines the factorization (HQ) scheme

• *i* fixed : Fixed Flavour Number Scheme (FFNS)

only light flavours in the proton: i = 3 (4)

c- (b-) quarks massive, produced in boson-gluon fusion

 $Q^2 \gg m_{HQ}^2$: can be less precise, NLO coefficients contain terms ~ $ln(\frac{Q}{m_{HQ}})$

- *i* variable: Variable Flavour Number Scheme (VFNS)
- Zero Mass VFNS: all flavours massless. Breaks down at $Q^2 \sim m_{HO}^2$
- Generalized Mass VFNS: different implementations provided by PDF groups smooth matching with FFNS for $Q^2 \rightarrow m_{HQ}^2$ must be assured

Factorization:
$$F_2^V(x,Q^2) = \sum_{i=1,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z},Q^2,\mu_F,\mu_R,\alpha_S) \times f_i(z,\mu_F,\mu_R)$$

i - number of active flavours in the proton: defines the factorization (HQ) scheme

• *i* fixed : Fixed Flavour Number Scheme (FFNS)

only light flavours in the proton: i = 3 (4)

c- (b-) quarks massive, produced in boson-gluon fusion

 $Q^2 \gg m_{HQ}^2$: can be less precise, NLO coefficients contain terms ~ $ln(\frac{Q}{m_{HQ}})$

- *i* variable: Variable Flavour Number Scheme (VFNS)
- Zero Mass VFNS: all flavours massless. Breaks down at $Q^2 \sim m_{HO}^2$
- Generalized Mass VFNS: different implementations provided by PDF groups smooth matching with FFNS for $Q^2 \rightarrow m_{HQ}^2$ must be assured

QCD analysis of the proton structure: treatment of heavy quarks essential

Heavy Quark Mass Definition in PDFs

Usually HQ coefficient functions use a pole mass definition

BUT: pole mass defined for free quarks Corrections due to loop integrals receive large contributions ~ $O(\Lambda_{QCD})$

> large higher order corrections bad convergence of perturbative series

Another way of defining quark mass: via renormalization

q

Heavy Quark Mass Definition in PDFs

Usually HQ coefficient functions use a pole mass definition

BUT: pole mass defined for free quarks Corrections due to loop integrals receive large contributions ~ $O(\Lambda_{QCD})$

> large higher order corrections bad convergence of perturbative series

Another way of defining quark mass: via renormalization

q

running coupling

running mass

Heavy Quark Mass Meaning in PDFs

Massive HQ coefficient functions are calculated at NLO using pole mass Smith. et al NPB 395,162 (1993)

Used by the global fit groups: MSTW, CTEQ, ABKM, GJR, HERAPDF

ZMVFNS: m_{HQ} defines a threshold at which HQ appears as an active flavour

GMVFNS: m_{HQ} is also used as a parameter at which FFNS turns into VFNS
Heavy Quark Mass Values in PDFs

Massive HQ coefficient functions are calculated at NLO using pole mass Smith. et al NPB 395,162 (1993)

Used by the global fit groups: MSTW, CTEQ, ABKM, GJR, HERAPDF

	PDF group	m_c	m_b H	Q scheme
	MSTW	1.4	/ 4.75	GMVFNS
	CTEQ	1.3	/ 4.5	GMVFNS
	JR	1.3	/ 4.2	FFNS
	ABKM	1.5	/ 4.5	FFNS
	HERAPDF	1.4 ^{-0.05} +0.25	/ 4.75	GMVFNS
D	DG values	1 66+0 1	8 / 4 79	

PDF fits assume pole mass definition for heavy quarks Values of m_c as used by most PDF groups too low wrt. PDG

Heavy Quark Mass Values in PDFs

Massive HQ coefficient functions are calculated at NLO using pole mass Smith. et al NPB 395,162 (1993)

Used by the global fit groups: MSTW, CTEQ, ABKM, GJR, HERAPDF

	PDF group	m_c	m_b H	Q scheme
	MSTW	1.4	/ 4.75	GMVFNS
	CTEQ	1.3	/ 4.5	GMVFNS
	JR	1.3	/ 4.2	FFNS
	ABKM	1.5	/ 4.5	FFNS
	HERAPDF	1.4 ^{-0.05} +0.25	/ 4.75	GMVFNS
DC voluce: 1 66+0 40 / 4 70				

PDG values: 1.66±0.18 / 4.79

PDF fits assume pole mass definition for heavy quarks

Values of m_c as used by most PDF groups too low wrt. PDG

HQ treatment in PDF fits, meaning and values of HQ masses non trivial..

Heavy quark data can help!

Heavy Quark Production at HERA

Heavy quarks in ep scattering produced in boson-gluon fusion

 \mathbf{V} HQ contributions to the proton structure function F_2 : (e.g. charm)

$$\sigma^{cc} \propto F_2^{cc}(x,Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L^{cc}(x,Q^2)$$

Direct test of HQ schemes in PDF fits

Beauty production in DIS

Beauty production in DIS

27

Beauty production in DIS

Beauty production in DIS

HERA measurements of beauty in DIS

described well by NLO QCD

Beauty Contribution to Proton Structure

Beauty contribution F^{b_2} to the proton structure function F_2 :

- well described by NLO and NNLO using different HQ schemes
- large statistical uncertainties

Open charm production in DIS

Open charm production in DIS

Open charm production in DIS

Open charm production in DIS

HERA measurements of charm in DIS

described well by NLO QCD

Massive or Massless Scheme?

Charm at $Q^2 >> m_c^2$: FFNS describes data well, ZMVFNS does not

Charm Structure Function at HERA

HERA Charm Measurement: H1 + ZEUS 9 measurements different charm tag methods 51 systematic error sources correlations accounted for

Combined Charm Data of HERA

Very precise F_2^{cc} measurement

Charm at HERA: Test HQ Schemes in PDFs

Data help understanding differences in HQ schemes

Charm at HERA: Test Choice of m_c in PDF

PDFs obtained from inclusive data sensitive to the choice of m_c

Charm Data in the PDF Fit

Charm production probes gluon directly. Do charm data influence the gluon?

PDFs and PDF fit using charm data is sensitive to the value of m_c

Charm Mass as a Model Parameter in PDF

Study the sensitivity of the PDF fit to the value of m_c

PDF fit to inclusive DIS

Charm Mass as a Model Parameter in PDF

Study the sensitivity of the PDF fit to the value of m_c

PDF fit to inclusive DIS

PDF fit to inclusive DIS + charm data

Value of m_c : how different for various HQ schemes in PDF Fits?

Test different HQ schemes (used by different PDF groups)

Value of m_c : how different for various HQ schemes in PDF Fits?

Value of m_c : how different for various HQ schemes in PDF Fits?

Test different HQ schemes (used by different PDF groups)

Different HQ schemes prefer different optimal $\star m_c$

Value of m_c : how different for various HQ schemes in PDF Fits?

Test different HQ schemes (used by different PDF groups)

Different HQ schemes prefer different optimal* *m*_c parameter of a specific HQ scheme in PDF fits

What is the Meaning of m_c in PDF Fits?

Recent theory developments: (ABKM group, DESY, *arXiv:1011.5790*) HQ coefficient functions provided in \overline{MS} scheme using running m_{HQ}

Perturbative series converge better

Consistent treatment of HQ in PDF fits

 $m_c(m_c)$ determined using DIS data

What happens if HERA charm data

are included?

Work in progress...

Heavy Quarks in PDFs and W/Z at LHC

Prediction of W[±] cross section @ LHC: dominant uncertainty due to PDF

 m_c variation in PDF: significant uncertainty on W@LHC in central region

Heavy Quarks in PDFs and W/Z at LHC

Vary the charm mass in the PDF. Use resulting PDFs for LHC predictions

Larger $m_c \rightarrow$ more gluons, less charm \rightarrow more light quarks \rightarrow larger σ_W

Heavy Quarks in PDFs and W/Z at LHC

Vary the charm mass in the PDF. Use resulting PDFs for LHC predictions

 m_c variation in PDF

 $1.4 < m_c < 1.65 \text{ GeV}$

3% uncertainty on W prediction
Heavy Quarks in PDFs and W/Z at LHC

Vary the charm mass in the PDF. Use resulting PDFs for LHC predictions

Several HQ schemes

 m_c variation in PDF

 $1.4 < m_c < 1.65 \text{ GeV}$

3% uncertainty on W prediction

Using different HQ schemes:

+ 7% uncertainty

Large uncertainty on $\sigma_{\scriptscriptstyle W}$ prediction due to HQ treatment in PDFs

Charm at HERA and W/Z at LHC

Use the optimal m_c for HQ schemes in PDFs fixed by HERA charm data

★ Optimal m_c using F_2 + F_2^c

ZMVFNS not considered

Uncertainty on σ_W prediction due to HQ treatment in PDFs reduced to 1 %

HERAPDF vs first LHC Data

HERAPDF vs first LHC Data

HERAPDF vs first LHC Data

So far the LHC data not very precise, but this will change very soon

 \Rightarrow best understanding of PDF is a must.

- > Understanding of the LHC data demands precise PDFs HERA DIS data provide highest precision
- Heavy quarks: important, but quite some issue in QCD analyses

HERA charm data provide severe constraints

Example: PDF uncertainties on predictions for W and Z at the LHC

PDFs from HERA to the LHC is a success Common effort of experiments and theory needed

Ultimate precision DIS: combined HERA Data

Published in JHEP 01 (2010) 109 : complete HERA I data, $\mathcal{L} \sim 115 \text{ pb}^{-1}$

e.g. NC cross section vs Q^2 : 6 bins in x

H1 and ZEUS data averaged:

- global fit of 1402 measurements
- 110 sources of systematic errors
- account for systematic correlations (cross-calibration of experiments)
- total uncertainty: 1-2% for $Q^2 < 500$ GeV²
- covered kinematics:

 $10^{-7} < x < 0.65$

 $0.05 < Q^2 < 30000 \ GeV^2$

Combination Procedure

Minimized value:

$$\chi^{2}(\vec{m},\vec{b}) = \sum_{i} \frac{\left(m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right)}{\left(\delta_{i,stat} \mu^{i}\right)^{2} + \left(\delta_{i,unc} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}$$

 $\boldsymbol{\mu}^i$ measured value at point i

 δ_i statistical, uncorrelated systematic error

 γ_i^j – correlated systematic error

 b_i – shift of correlated systematic error sources

 m^i – true value (corresponds to min χ^2)

Measurements performed sometimes in slightly different range of (x, Q^2) swimming to the common (x, Q^2) grid via NLO QCD in massive scheme

HERA Parton Density Functions

 m_c =1.4 GeV; m_b =4.75 GeV; $f_s(Q_0^2)$ =0.31

10 parameter fit, NLO DGLAP Heavy quarks: massive Variable Flavour Number Scheme Scales: $\mu_r = \mu_f = Q^2$ Experimentally very precise Parameterization at starting scale: $xg(x) = A_{\sigma}x^{B_{g}}(1-x)^{C_{g}}$ $xu_{v}(x) = A_{u} x^{B_{u_{v}}} (1 - x)^{C_{u_{v}}} (1 + E_{u} x^{2})$ $xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}$ $x\overline{U}(x) = A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}}$ $x\overline{D}(x) = A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}$

Modern Understanding of the Proton

HERA PDF:

use consistent data set: H1+ZEUS proper treatment of error correlations

Global PDF Fit Groups: (ABKM,CTEQ,GJR,MSTW,NNPDF)

use more data sets from different experiments

error correlations sometimes unclear

not all include combined HERA data

all treat heavy quarks differently

HERA PDFs vs global QCD analysis

- much better precision in gluon and sea
- differences in valence

ep Scattering in Quark-Parton Picture

Think of scattering of longitudinal and transverse polarized photons: y (or $Y_{\pm}=1\pm(1-y)^2$) related to photon polarization

Kinematics:

 $x=-q^2/2p \cdot q$ Bjorken scaling variable $Q^2 = -q^2$ photon virtuality $y=p \cdot q / p \cdot k$ transferred γ energy fraction

ep Scattering in Quark-Parton Picture

Think of scattering of longitudinal and transverse polarized photons: y (or $Y_{\pm}=1\pm(1-y)^2$) related to photon polarization

 $x=-q^2/2p \cdot q$ Bjorken scaling variable $Q^2 = -q^2$ photon virtuality $y=p \cdot q / p \cdot k$ transferred γ energy fraction

helicity conservation $\Rightarrow \sigma_L = O$

Proton Structure Functions

Cross Section of ep scattering expressed via proton structure functions

 $\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[(1 + (1 - y)^2)F_2 - y^2F_L \pm xF_3 \Big]$ measured

Kinematics:

 $x=-q^2/2p\cdot q$ Bjorken scaling variable $Q^2 = -q^2$ photon virtuality $y=p\cdot q/p\cdot k$ transferred γ energy fraction

Proton Structure Functions

Cross Section of ep scattering expressed via proton structure functions

	Kinematics:
$x = -q^2/2p \cdot q$	Bjorken scaling variable
$Q^2 = -q^2$	photon virtuality
$y=p\cdot q/p\cdot k$	transferred γ energy fraction

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[(1 + (1 - y)^2)F_2 - y^2F_L \pm xF_3 \Big]$$

measured

Quark-Parton-Model:

$$F_L \sim \sigma_L = 0$$

$$F_2 = \sum_q x e_q^2 (q(x) + \overline{q}(x))$$

Parton Distribution Functions (PDFs): probability to find a q in a proton carrying x fraction of its momentum

Another way to access the gluon directly: \mathbf{F}_{L}

Remind of photon- scattering: $F_2 \sim (\sigma_T + \sigma_L), F_L \sim \sigma_L$

Angular momentum conservation: spin 1/2 quark absorbs spin-1 photon

quark helicity $\pm \frac{1}{2}$, $F_L = 0$

off-shell quarks may absorb longitudinal photons

QCD:
$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 (1 - \frac{x}{z}) zg(z) \right]$$

quarks gluons
radiating a gluon splitting into quarks

Extraction of F_L

HERA PDF Fits at NNLO

First HERA PDF Fits at NNLO:

Ihapdf grids available https://www.desy.de/h1zeus/combined_results/ NNLO has impact on F_L at low Q^2

HQ Contribution to the Proton Structure

Can be determined experimentally: e.g. "charm structure function":

$$F_2^{cc} \propto \frac{Q^2 \times \alpha_s}{m_c^2} \int \frac{dx}{x} \mathscr{C}g(x_g, Q^2) \times C(...)$$

use and combine different charm tagging methods

measure cross sections of charm and beauty production in DIS:

$$\sigma^{cc} \propto F_2^{cc}(x,Q^2) - \frac{y^2}{1+(1-y)}F_L^{cc}(x,Q^2)$$

- Direct test of different schemes of HQ treatment in PDF fits
- Can be included in the full QCD analysis of DIS cross sections additional constrain on the gluon density in the proton reduce parameterization uncertainty

PDFs From HERA to Tevatron and the LHC

Kinematics in pp collisions $\overbrace{E_1}^{x_1}$ $\overbrace{E_2}^{x_2}$ $\overbrace{E_2}^{x_2}$ Center-of-mass energy:

$$s = 4 \cdot E_1 \cdot E_2$$

2-parton interaction: $\hat{s} = x_1 \cdot x_2 \cdot s \ge M$ Energy scale M = Q

$$x_{1,2} = \frac{M}{\sqrt{s}} \cdot exp(\pm y)$$

$$\uparrow$$
rapidity

Proton collisions at the LHC

LHC: *p*-*p* collisions at $\sqrt{s} = 7$, 10, 14 TeV Goal @ LHC: Higgs and new physics Main challenge: Background suppression Main Background: QCD Hard processes > 80% gluon-gluon fusion Cross section ~ $|g(x)|^2$ Precision of the gluon density essential!

Luminosity: e.g. $ud \rightarrow W^+ \rightarrow l^+ v_l$

Precision of light quark densities essential!

Key issue: understanding of the proton

Proton-Proton Collisions at High Energies

Structure: $f_i(x,Q^2) = q_i(x,Q^2)$, $g(x,Q^2)$, f_i - beam parameters, **process independent**

Hard 2-parton interaction calculable in pQCD

Proton-Proton Collisions at High Energies

Structure: $f_i(x,Q^2) = q_i(x,Q^2), g(x,Q^2),$ f_i - beam parameters, **process independent**

Hard 2-parton interaction calculable in pQCD

Factorization: PDF⊗ hard sub-process ME

$$\sigma(s) = \sum_{i,j} \int_{\tau_0}^1 \frac{d\tau}{\tau} \cdot \frac{dL_{ij}(\mu_F^2)}{d\tau} \cdot \hat{s} \left[\hat{\sigma}_{ij} \right]$$

$$\tau \cdot \frac{dL_{ij}}{d\tau} \propto \int_0^1 dx_1 dx_2 (x_1 f_i(x_1, \mu_F^2) \cdot x_2 f_j(x_2, \mu_F^2)) + (1 \leftrightarrow 2)\delta(\tau - x_1 x_2)$$

Proton-Proton Collisions at High Energies

HERAPDF vs Jets at TEVATRON

Predictions based on HERAPDF in agreement with TEVATRON data