

Calibration of the Pierre Auger Observatory with LHC Forward Detectors

Ralf Ulrich

DESY Seminar 18./19. Januar 2011

Cosmic Rays and Extensive Air Showers

Particle Accelerators: Man-Made versus Cosmic Rays

Ultra-High Energy Cosmic Rays

Large Hadron Collider (LHC)

Our understanding of hadronic interactions at cosmic ray energies is incomplete

- The interpretation of air shower data is very model dependent
- Hadronic interaction features are not well constraint at cosmic ray energies
- Calibrate air shower simulations at LHC energy
- Determine properties of hadronic interactions at ultra-high energies from cosmic ray data

Overview of Cosmic Ray Data

Large amounts of high quality cosmic ray data Auger, HiRes, AGASA, TA, Future: Auger-North, JEM-EUSO

BUT

Lack of reliable hadronic interaction models, which are needed for a detailed interpretation

• Astrophysical scenarios: $E_{\rm knee} \propto Z$

▶ Particle physics: E_{knee} ∝ A ⇒>20% of missing energy at LHC ...

• Astrophysical scenarios: $E_{\rm knee} \propto Z$

► Particle physics: E_{knee} ∝ A ⇒>20% of missing energy at LHC ...

• Astrophysical scenarios: $E_{\rm knee} \propto Z$

▶ Particle physics: E_{knee} ∝ A ⇒>20 % of missing energy at LHC ...

- Astrophysical scenarios: $E_{\rm knee} \propto Z$
- ▶ Particle physics: E_{knee} ∝ A ⇒>20% of missing energy at LHC ...

 $E\sim 10^{19}\,{
m eV}$

Height a.s.l. (m)

 $E\sim 10^{19}\,{
m eV}$

Average X_{\max}

Fluctuations of $X_{\rm max}$

 \Rightarrow Strong trend to reduced fluctuations at high energy

Hadronic Interactions – Cosmic Ray-Air Cross Section

Limit: no fluctuation in the air shower after first interaction

Extensive Air Showers and Hadronic Interactions

Extended Heitler Model

Shower maximum

$$X_{
m max} pprox \lambda_{
m I} + X_0 \ln rac{E_0}{N_{
m mult} E_{
m crit}^{
m e.m.}}$$

Muon number at observation level

$$N_{\mu} = N_{\pi^{\pm}} = \left(rac{E_0}{E_{ ext{crit}}^{ ext{I}}}
ight)^{eta}$$

where

 $eta = \ln \left(rac{2}{3} \, \textit{N}_{
m mult}
ight) / \ln \left(\textit{N}_{
m mult}
ight) pprox 0.9$

Beyond the Heitler Model ...

- Cross Section: λ
- Multiplicity: nmult
- Elasticity: $k_{ela} = E_{max}/E_{tot}$
- Charge ratio: $c = n_{\pi^0}/(n_{\pi^0} + n_{\pi^-} + n_{\pi^+})$
- Nuclear primary: A

Analysis of Cosmic Ray Data

KASCADE - Electron/Muon-Frequencies

(KASCADE, APP:24 1 (2005), astro-ph/0505413)

Pierre Auger Observatory: X_{max} vs. Muons

(Auger/HiRes X_{max}: PRL 2010, Muons: e.g. ICRC 2007, arXiv:0706.1921 [astro-ph])

Cosmic Ray Analysis/Modeling Uncertainties

Modeling Uncertainties

Multiplicity

Modify specific features of hadronic interactions during air shower Monte-Carlo simulation:

- Assume logarithmically growing deviation from original model prediction above 10¹⁵ eV.
- ▶ Below 10¹⁵ eV the original model is used.
- The parameter f_{19} denotes the nominal deviation at 10^{19} eV .

$$\alpha^{\text{modified}}(\mathsf{E}) = \alpha^{\text{HE-model}}(\mathsf{E}) \cdot \left(1 + (\mathsf{f}_{19} - 1) \cdot \frac{\log_{10}(\mathsf{E}/1 \, \text{PeV})}{\log_{10}(10 \, \text{EeV}/1 \, \text{PeV})}\right)$$

Where α can be:

- Cross Section: $\sigma_{\rm had}^{\rm prod}$
- ► Multiplicity: *n*_{mult}
- Elasticity: $k_{ela} = E_{leading}/E_{max}$
- Pion-Charge Ratio: $c = n_{\pi^0}/(n_{\pi^0} + n_{\pi^+} + n_{\pi^-})$

Modify specific features of hadronic interactions during air shower Monte-Carlo simulation:

- Assume logarithmically growing deviation from original model prediction above 10¹⁵ eV.
- ▶ Below 10¹⁵ eV the original model is used.
- The parameter f_{19} denotes the nominal deviation at 10^{19} eV .

$$\alpha^{\text{modified}}(\mathsf{E}) = \alpha^{\text{HE-model}}(\mathsf{E}) \cdot \left(1 + (\mathsf{f}_{19} - 1) \cdot \frac{\log_{10}(\mathsf{E}/1 \text{ PeV})}{\log_{10}(10 \text{ EeV}/1 \text{ PeV})}\right)$$

Where α can be:

- Cross Section: $\sigma_{\rm had}^{\rm prod}$
- Multiplicity: n_{mult}
- Elasticity: $k_{ela} = E_{leading}/E_{max}$
- Pion-Charge Ratio: $c = n_{\pi^0}/(n_{\pi^0} + n_{\pi^+} + n_{\pi^-})$

Results for $\langle X_{ m max} angle$

Proton

Iron

• $\langle X_{\max} \rangle$ can be shifted significantly

Data are suggesting

- Intermediate mass, mixed composition, or:
- Large cross section for a proton dominated composition
- Small cross section for a iron dominated composition

Results for $\langle X_{ m max} angle$

Proton

Iron

- $\langle X_{\rm max} \rangle$ can be shifted significantly
- Data are suggesting
 - Intermediate mass, mixed composition, or:
 - Large cross section for a proton dominated composition
 - Small cross section for a iron dominated composition

Results for $RMS(X_{max})$

Proton

Iron

• $RMS(X_{max})$ mostly impacted by cross section, and elasticity

- Iron induced showers very robust
- Auger data only marginally compatible with protons in a high cross section scenario

Results for $RMS(X_{max})$

Proton

Iron

- $RMS(X_{max})$ mostly impacted by cross section, and elasticity
- Iron induced showers very robust
- Auger data only marginally compatible with protons in a high cross section scenario

Results for Muon Numbers

Proton

- Multiplicity and Pion charge ratio are shifting model predictions
- Auger muon data incompatible with proton scenario
- Even for iron primaries: multiplicity must be high and pion-charge-ratio small

Results for Muon Numbers

Proton

Iron

- Multiplicity and Pion charge ratio are shifting model predictions
- Auger muon data incompatible with proton scenario
- Even for iron primaries: multiplicity must be high and pion-charge-ratio small

Caution: Definition of Muon number is not identical, e.g.: Auger measures at 1000 m, Simulations give total muon number

LHC Data

as a benchmark for existing models

Rise of Secondary Multiplicity

(T. Pierog)

Rise of Secondary Multiplicity

(D. d'Enterria et al., to be published)

Multiplicity Distribution

Pseudorapidity Distribution, NSD

Pseudorapidity Distribution, INEL

Average Transverse Momentum

Ralf Ulrich

Extrapolation to GZK Energies

(D. d'Enterria et al., to be published)

\Rightarrow Data at 14 TeV are mandatory

Interactions with Nuclei/Air

(T. Pierog)

Air Showers: p-Air, A-Air, π -Air, ...

 \Rightarrow not just p-p, but nuclei and nuclei combinations

Forward Detectors

(TOTEM, ZDC, CASTOR)

Forward Detectors

 \Rightarrow Crucial for air showers is particle production in **forward direction**!

Predicted Particle Production in Forward Direction

Impact of Modified Multiplicity

(cf. Ulrich et al., submitted, arXiv:1010.4310v1 [hep-ph])

Impact of Modified Elasticity

(cf. Ulrich et al., submitted, arXiv:1010.4310v1 [hep-ph])

Potential Impact of LHC on Interpretation of EAS Data

At the example of a precise measurement of the elasticity and CASTOR

Relevance of CASTOR for Cosmic Ray Interpretation

Ralf Ulrich

39

Impact of Elasticity / Leading Particles

 \blacktriangleright Precise measurement of elasticity at 300 ${\rm GeV}$

Extrapolation uncertainty grows by 10 % per decade in energy

Impact of Elasticity / Leading Particles

Precise measurement of elasticity at 14 TeV

Extrapolation uncertainty grows by 10 % per decade in energy

Summary

- High energy models need tuning to data as close to the phase space relevant in air showers as possible
- Interaction characteristics has impact on air shower observables on the same order of magnitude as as primary mass composition
 - \Rightarrow Almost impossible to "measure" mass composition from air shower observables in the moment
- If cosmic ray mass composition is constrained \Rightarrow Air shower data sensitive to interaction physics up to \sim 300 TeV

So far:

- LHC data is well bracketed by cosmic ray models
- \blacktriangleright Cosmic ray community needs the data at 14 TeV and high η

Outlook Helmholtz Young Investigator Group at KIT: CMS forward physics / Pierre Auger Observatory