What is the right Linear Collider?

Tuesday Seminar Sept. 21, 2010 J.List, DESY

Today's Menue

- Introduction
 - e⁺e⁻ Linear Colliders:
 - What we expect of a LC
 - Some features of LCs
 - LC Detectors:

Tracking calorimeters with (almost) no material in front

- Defining the right Linear Collider 3 Examples
 - pinning down the mass of a light Higgs boson
 - unraveling a SUSY scenario with small mass differences
 - LC Physics Performance: Accelerator x Detector x Reconstruction & Analysis-Techniques
- Conclusions

Introduction

- Standard model of particle physics very successful down to quantum loop Δα⁽⁵⁾ level
- but has important omissions and open questions, like
 - Higgs, mass hierarchy and fine tuning
 - dark matter, dark energy, quantum gravity
 - number of generations, unification?
 -
 - => good reasons for expecting new physics at the Terascale

=> LHC!

	Measurement	Fit	0 ^{meas} 0 1	-O ^{fit} /	σ ^{meas} 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768			
m _z [GeV]	91.1875 ± 0.0021	91.1874			
Γ _z [GeV]	2.4952 ± 0.0023	2.4959	-		
σ ⁰ _{had} [nb]	41.540 ± 0.037	41.479			
٦ ₁	$\textbf{20.767} \pm \textbf{0.025}$	20.742			
4 ^{0,I} fb	0.01714 ± 0.00095	0.01645			
Α ₁ (Ρ _τ)	0.1465 ± 0.0032	0.1481			
₹ _b	0.21629 ± 0.00066	0.21579			
٦ _.	0.1721 ± 0.0030	0.1723			
Ч ^{0,b}	0.0992 ± 0.0016	0.1038			
A ^{0,c} fb	0.0707 ± 0.0035	0.0742			
۹ _b	$\textbf{0.923} \pm \textbf{0.020}$	0.935			
۹ _c	$\textbf{0.670} \pm \textbf{0.027}$	0.668			
۹ _I (SLD)	0.1513 ± 0.0021	0.1481			
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm fb})$	$\textbf{0.2324} \pm \textbf{0.0012}$	0.2314			
m _w [GeV]	$\textbf{80.399} \pm \textbf{0.023}$	80.379			
Г _w [GeV]	$\textbf{2.085} \pm \textbf{0.042}$	2.092	•		
m _t [GeV]	$\textbf{173.3} \pm \textbf{1.1}$	173.4			
uly 2010			0 1	2	3

Introduction

- understanding the discoveries:
 - identify kind of new physics
 - find the theory behind
 - and determine its parameters
- => high energy frontier \leftrightarrow high precision frontier
- at an e⁺e⁻ Linear Collider, the initial state is
 - clean
 - tunable in energy \rightarrow threshold scans
 - tunable in helicity
 → test chiral structure

Two Linear Colliders on the market

ILC

- 90, 200...500 GeV, upgrade 1 TeV
- technology proven (e.g. FLASH)
- 2007: Reference Design Report (RDR)
- 2009: Letters of Intent (LoI)
- 2012: Technical Design Report (TDR)
- 2013: Project Proposal

Today: Focus here – more studies done

- technology under development
- 2011: Conceptual Design Report

→ dedicated seminar in November....

Some features of high energy e⁺e⁻ colliders

- Elementary particles collide
 → well defined collision energy E_{CM}
 - \rightarrow well defined polarisation

important:

must be able to choose E_{CM} continuosly

- need high luminosity O(10³⁴cm⁻²s⁻¹)
 → focus to O(nm) beam size

 → Beam beam interaction:
 - e+e- pair background
 - tail in beam energy spectrum "beam strahlung"

- effect on polarisation: ~ 0.2% (ILC) 5% (CLIC)

0.03 0.02 0.01

492

484

495

108

500

502

sod Root(s) (GeV)

bunch spacing: ~330 ns (ILC) 0.5 ns (CLIC)
 => some detector components will integrate over several bunch crossings

ILC – still several flavours...

An ILC Detector

- two proposals: ILD & SiD
- All-Silicon tracking with 4Tesla B-field (SiD)
- Or: TPC + Si tracking with 3.5T B-field (ILD)
- for issues discussed today, the differences are not substancial
- => Focus on ILD here

An ILC Detector

- two proposals: ILD & SiD
- All-Silicon tracking with 4Tesla B-field (SiD)
- Or: TPC + Si tracking with 3.5T B-field (ILD)
- for issues discussed today, the differences are not substancial
- => Focus on ILD here

Some features of an ILC detector

- almost no material in front of calorimeter:
 - $\sim 10\% X_0$ in barrel
 - $\sim 30\% X_0$ in endcap
- momentum resolution 10x better than LEP $\rightarrow \sigma_{1/pt} = 2 \cdot 10^{-5} \text{ GeV}^{-1}$

Some features of an ILC detector

J.List

Some features of an ILC detector

J.List

Defining the right Linear Collider

13

Example 1

Model-independent Higgs mass measurement

Profiling the Higgs Boson

- Reminder the precision Higgs physics menue:
 - decay-mode-independent observation
 - decay-mode-independent mass (50 MeV)
 - total width (model-independent)
 - absolute couplings (Z,W,t,b,c,τ) (1-5%)
 - spin, CP
 - top Yukawa coupling (~5%)
 - self coupling (~20%, 120-140 GeV)
 - $\Gamma_{\gamma\gamma}$ at photon collider (2%)

=> fully establishHiggs mechanism& distinguishmodels

Profiling the Higgs Boson

- Reminder the precision Higgs physics menue:
 - decay-mode-independent observation
 - decay-mode-independent mass (50 MeV)
 - total width (model-independent)
 - absolute couplings (Z,W,t,b,c,τ) (1-5%)
 - spin, CP
 - top Yukawa coupling (~5%)
 - self coupling (~20%, 120-140 GeV)
 - $\Gamma_{\gamma\gamma}$ at photon collider (2%)

=> fully establish Higgs mechanism & distinguish models

J.List

Model-independent Higgs mass measurement

Higgs recoil mass

- most precise and model-independent technique: $M_{H}^{2} = M_{recoil}^{2} = s + M_{Z}^{2} - 2E_{Z}\sqrt{s}$
- precision depends only on
 - lepton momenta \rightarrow tracking
 - knowledge of s \rightarrow ISR, Beamstrahlung
 - but not on Higgs decay!
- E_{CM} ? Near threshold:
 - largest cross-section
 - Z at rest \rightarrow leptons "slow"
 - less ISR / beamstrahlung

Results for an "RDR ILC" (with 250fb⁻¹ @ 250 GeV)

Detector resolution or accelerator?

- beam energy spread & beamstrahlung => beam energy spectrum
- compare Higgs recoil mass at generator level and after reconstruction

 width of recoil peak dominated by beam energy compared. by beam energy spread:

What about systematic uncertainties?

- can be controlled using ZZ-> $\mu^+\mu^-$ ff: i.e. syst. error on M_H given by ZZ statistics
 - Di-muon invariant mass controls tracking & muon ID

• Z recoil mass controls center of mass energy and radiative effects

800

=> δM_{H,svs} ≈ 30....35 MeV

J.List

H. Li ⁻

Higgs threshold data are 'expensive'

- data not useful for other important studies (tt, NP, ...)
- \bullet luminosity decreases at lower E_{CM}
 - 250fb⁻¹ takes with RDR ILC:
 ~ 1 year @ 500 GeV
 - ~ 2.5 years @ 250 GeV
 - depending on its position, the positron source might be less efficient

- in addition: alternative beam parameter sets could save construction costs but would lower the luminosity even further worst case: 250fb⁻¹ @ 250 GeV ~ 10 years
- => can we do it at higher energy, e.g. the tt-threshold ?
 - higher luminosity
 - do top physics and possibly some BSM simultaneously

How crucial are the Higgs threshold data?

- 300fb⁻¹ @ 350 GeV
 2 years with RDR ILC
- Z decays boosted, i.e. higher lepton momenta
 > δM_H increases by factor 2

now dominated by momentum resolution!

add other cost saving proposals, plus systematics
 > δM_H ≈ 50 MeV (RDR, 250 GeV, 2 years)
 δM_H ≈ 150 MeV (SB2009 w/o TF, 350 GeV, 2 years)

For mass measurement, Higgs threshold data cannot be replaced by higher E_{CM}!

"Take home message" from Higgs mass studies

- Simulating accelerator effects *is* important
- Make sure that luminosity is high enough at all E_{CM}
- Only the luminosity *inside the peak* counts
- Beam energy spread is finally limiting
- Discussion on best solution is ongoing *now* decisive suggestion for improvement:
 Double the train repetition rate from 5 Hz to 10 Hz at low E_{CM}?
- Watch it!

Example 2

Understanding a SUSY scenario with small mass differences

SUSY with small mass differences

Sample scenario: SPS1a'

- very close to best fits to SM data in CMSSM / MSSM18
- small $\Delta M(\tau_1, \chi^0_1) = 10.2 \text{ GeV}$

=> typical signature: soft τ-leptons + missing momentum

=> prone to backgrounds!

 $\mathsf{m}_{\mathsf{r}_{_{\mathsf{T}}}}-\mathsf{m}_{\chi_{_{\mathsf{T}}}^{_{\mathsf{C}}}}$ [GeV/c²] ır.Phys.J.C64:391415,2009 0.9 350 0.8 300 0.7 250 0.6 200 0.5 SPS1a 150 0.4 0.3 100 0.2 50 0.1 0 n 100 400 500 600 200 300 m_{γ^0} [GeV/c²]

J.List

Detector and accelerator interplay

- Background in trackers:
 - fake tracks from bkg hits
 - real tracks from bkg particles
 - => effect on reconstruction of T-decays?
- Background in forward region:
 - => effect on low angle electron veto against gamma-gamma events?
- Beam energy spectrum:
 - => deterioration of T energy endpoint?
- Polarisation:
 - signal to background ratio
 - distinguishing SUSY channels

Results for 500fb⁻¹ @ 500GeV, RDR ILC

J.List

Intermezzo:

Realistic reconstruction & analysis does matter

- pattern recognition and track fitting have to be able to cope
- additional soft tracks: spoils simplistic τ-finding
 => switch to a real experiment's τ-finder (DELPHI)
- => reconstruction and analyses need to be done with a realistic level of detail to get realistic answers!

Varying accelerator parameters

Time for reaching RDR (=case 1) precision:

- case 2: more beam induced background (a la SB2009 TF)
- case 3: reduced positron polarisation (33% → 22%)
- case 4: increased beam energy spread (0.16 → 0.21 %), more beamstrahlung, i.e.reduced luminosity within 1% of nominal energy (0.83 → 0.72)

• case 5: even more beamstrahlung (SB2009 w/o TF)

Does this matter?

Ex: study of a similar SUSY scenario: SPS1[arXiv:hep-ex/0211002] (N.B.: this is just mSugra... the real stuff will be more complicated!)

 consider continuum running plus all necessary SUSY threshold scans (not counting Higgs threshold run!)
 => with an RDR ILC, after more than 6 years of running:

parameter	SPS1
m_0	$100\pm0.08~{\rm GeV}$
$m_{1/2}$	$250\pm0.20~{\rm GeV}$
A_0	$0\pm13~{ m GeV}$
aneta	10 ± 0.47

• need 1.5...1.8 x more running time @ 500 GeV, even larger factors at lower energies.....

Does this matter?

Ex: study of a similar SUSY scenario: SPS1[arXiv:hep-ex/0211002] (N.B.: this is just mSugra... the real stuff will be more complicated!)

 consider continuum running plus all necessary SUSY threshold scans (not counting Higgs threshold run!)
 => with an RDR ILC, after more than 6 years of running:

parameter	SPS1
m_0	$100\pm0.08~{\rm GeV}$
$m_{1/2}$	$250\pm0.20~{\rm GeV}$
A_0	$0 \pm 13 { m ~GeV}$
aneta	10 ± 0.47

 need 1.5...1.8 x more running time @ 500 GeV, even larger factors at lower energies.....
 => pay attention that you get the *right* Linear Collider!

LHC / ILC comparison at SPS1a [Phys.Rept.426:47-358,2006]

	SPS1a	StartFit	LHC	$\Delta_{ m LHC}$	LC	$\Delta_{ m LC}$	LHC+LC	$\Delta_{\rm LHC+LC}$
m_0	100	500	100.03	4.0	100.03	0.09	100.04	0.08
$m_{1/2}$	250	500	249.95	1.8	250.02	0.13	250.01	0.11
$\tan \beta$	10	50	9.87	1.3	9.98	0.14	9.98	0.14
A_0	-100	0	-99.29	31.8	-98.26	4.43	-98.25	4.13

Next steps

- studies of many more physics examples in progress
- available soon: similar studies for CLIC
- discussion of accelerator parameters is ongoing
 => find the most cost effective design which allows to reach the physics goals!
- don't forget: meaningful comparison of detector / machine options needs appropriate reconstruction & analysis techniques
 => continue with one example for recent developments

Example 3

Kinematic Fitting in the presence of Initial State Radiation and Beamstrahlung

Kinematic fitting

21.9.2010

J.List

Improved treatment of Beamstrahlung?

- Beamstrahlung...
 - creates e⁺e⁻ pair background
 - reduces the effective statistics
 - (events from low energy tail don't contribute to peaks, edges, ...)

=> if amount of radiated energy could be determined with *sufficient precision* on an *event-by-event* basis, effective luminosity could be recovered!

- Problem: radiation dominantly along beam axis \rightarrow not measured!
- Idea: use kinematic constraints:
 - perform kinematic fit of all *measured* particle momenta...
 - ...and a "photon" || z-axis, with $E_{\gamma} = 0$, and δE_{γ} according to the (known) probability density function of E_{γ}
 - apply energy and momentum conservation constraints
- => can we reconstruct the correct photon energy?

Yes, we can!

[arXiv:1006.0436, accepted by NIM A]

- the complete range of photon energies can be reconstructed
- with a resolution of 3 GeV
- => ~ 2x better than expected from E_{CM} - ΣE_{jet}

- tested on e⁺e⁻ → 4 light jets in full ILD simulation
- kinematic fit with
 4 jets and 1 photon
- imposing $\Sigma E = 500$ GeV; $\Sigma p_{x,y,z} = 0$; $M_{12} = M_{34}$

Recovering luminosity

J.List

Conclusions

- An e⁺e⁻ Linear Collider is essential to complement the LHC at the high precision frontier
- Physics case and conceptual designs have been established more than 10 years ago – maybe new input soon?
- The ILC plans a TDR and a Project Proposal in 2012/13. Its design is currently revisited to make sure that we really get a bang for every buck
 - many machine parameters matter for physics no only highest E_{CM} and luminosity at highest energy
 need realistic simulation, reconstruction & analyses in order not to draw false conclusions
- CLIC plans a CDR in 2011 similar studies ongoing
- We make sure that you get the right Linear Collider!

BACK UP

J.List

Flavour Tag with machine background

Improved di-jet mass resolution

21.9.2010

J.List

Defining the right Linear Collider

45

Luminosity, Energy & Polarisation

Goals & Requirements

- ▶ luminosity: 10^{-3} (ew precision 10^{-4})
- ▶ beam energy: 10^{-4} (ew precision: few 10^{-5})
- ▶ polarisation: $\Rightarrow 2.5 \cdot 10^{-3}$ (ew precision 10^{-3})
- ▶ but: measurement location usually not e⁺e⁻ IP ⇒ "interpolation"
- and: physics analyses assume not only E and L = ∫ Ldt known, but full luminosity spectrum, i.e dL/d√s

The key players – upstream of IP

Compton-Polarimeter

- 1.8 km upstream of IP
- backscattering of circular polarised laser
- asymmetry w.r.t. laser helicity
 polarisation

BPM based Energy Spectrometer

- 700 m upstream of IP
- measure beam position in chicane
- \blacktriangleright resolutions of $\simeq 1 \mu$ m achieved

The key players – at the IP

- LumiCal: 20 50 mrad, high precision lumi, hermeticity
- BeamCal: 5 20 mrad, fast lumi (tuning), collision diagnostics, hermeticity
- PairMonitor: in front of BeamCal, collision diagnostics
- LHCal: more hermeticity

common challenges: precision & radiation hardness!

The key players – downstream of IP

- GamCal: 0 5 mrad, ca 100 m from IP, total radiation loss
- Compton-Polarimeter
- Energy Meas. (Synchr. Imaging)

STRC .

Magniets

DISKI

P.27,102.0

OPEXIA

10 meters

10 cm

SPEXE.

OFFICER CONTRA

p-17.010 m (p-18.04 m)

est teht n

GODIES.

00606

Luminosity, Beam Energy and all that

recall Lol studies:

- $dL/d\sqrt{s}$ assumed to be know perfectly - not only $< dL/d\sqrt{s} >$
- analyses are sensitive to beam energy spread & beamstrahlung (Higgs recoil!)
- not studied in Lol: threshold scans!
- \Rightarrow How do we get $dL/d\sqrt{s}$?

LumiCal

- ▶ count Bhabha events, typ. $E_{e^+} + E_{e^-} > 0.8 \cdot \sqrt{s}$
- $\int \mathcal{L}dt = N/\sigma$
- ▶ σ : theoretical cross-section \rightarrow needs energy spectrum...
- outgoing Bhabhas might be deflected by bunch charge!

Measuring Beam Parameters

Beam Parameter Determination

- BeamCal & PairMonitor : N(e[±]), emittances, bunch sizes, waists, offsets,.. (limited by correlations amoung parameters)
- fit from up-down, left-right asymmetries, energy ratios...
- double read-out: fast coarse read-out for lumi tuning detailed read-out for full analysis
- ► GamCal: total energy loss into photons → improves resolution

Energy Spectrometers

- upstream: measure energy after linac (no beamstrahlung!)
- downstream: minimize beamstrahlung, measure peak energy and energy spread

Direct measurement of dL/d \sqrt{s} from physics

Acolinear Bhabhas

$$\blacktriangleright \ \frac{\sqrt{s'}}{\sqrt{s}} = 1 - \frac{\Delta\Theta}{2\sin\Theta_0}$$

- ⇒ need excellent forward tracking
- what about machine background?

Radiative Returns

•
$$e^+e^- \rightarrow \mu^+\mu^-\gamma$$

• $\frac{s'}{s} = \frac{\sin\Theta_1 + \sin\Theta_2 - |\sin(\Theta_1 + \Theta_2)|}{\sin\Theta_1 + \sin\Theta_2 + |\sin(\Theta_1 + \Theta_2)|}$

• absolute $\sqrt{s'}$ calibration via Z resonance

• needs
$$\delta \Theta = 10^{-4}$$

How can all these tools be combined to give the best $dL/d\sqrt{s}$?

Positron Polarisation

- baseline source delivers 30-45%
- ▶ but positron polarisation for experiments is NOT baseline → could be destroyed
- consequences:
 - damping rings are not enough, need to actively destroy it
 - need to measure extremely precisely if it is really destroyed
 - polarimeter calibration from e⁺e⁻ data much more luminosity demanding,
 - no cancelations of systematics
 - some physics cannot be done at all Ex.: disentangling helicity states of new physics

Better keep it!

- positron polarimeters forseen
- but no fast helicity flip!
 - ▶ e⁻: can quickly flip source laser helicity
 - ► e⁺: undulator polarity cannot be reversed, need spin rotators ⇒ slow!
- $\blacktriangleright \Rightarrow$ no cancellation of systematics
- ► ⇒ reduced gain through $P_{\text{eff}} = \frac{P_L + P_R}{1 + P_L \cdot P_R}$
- spending a lot of time on "uninteresting" states LL, RR

Polarimetry at the Z pole?

- ► $\delta \sin^2 \theta_{\text{eff}}$ today: $18 \cdot 10^{-5}$
- with $P(e^+, e^-) = (40\%, 90\%)$: $6 \cdot 10^{-5}$ with $\int \mathcal{L} dt = 0.5 \text{ fb}^{-1}$

needs

- positron polarisation at the Z pole (source location?!)
- fast positron helicity flip
- best possible polarimetry (systematics limited at \simeq 1 fb⁻¹ with $\delta P/P = 0.25\%$)

- \blacktriangleright \Rightarrow interesting physics with lumi not far from accumulated calibration runs over \simeq 10 years
 - might even investigate a few weeks dedicated running?

Polarimetry with annihilation data

if positron polarisation

- $\sigma = \sigma_0 [1 P(e^+) \cdot P(e^-) + (P(e^+) P(e^-))A_{LR}]$
- \blacktriangleright \Rightarrow correlations matter!
- ► can calibrate polarimeters with modified Blondel Scheme: $|P(e^{\pm})| = \sqrt{\frac{(\sigma_{LR} + \sigma_{RL} - \sigma_{LL} - \sigma_{RR}) \cdot (\pm \sigma_{LR} \mp \sigma_{RL} + \sigma_{LL} - \sigma_{RR})}{(\sigma_{LR} + \sigma_{RL} + \sigma_{LL} + \sigma_{RR}) \cdot (\pm \sigma_{LR} \mp \sigma_{RL} - \sigma_{LL} + \sigma_{RR})}}$
- if $P_L = P_R$ (for each beam)
- ▶ if not: corrections \simeq uncorrelated polarimeter error on $P_L P_R$
- advantage: model independent!
- need to spend substancial amount of running time on LL and RR \rightarrow expensive!

$$e^+e^- \rightarrow W^+W^-$$

preliminary results from full simulation (ILD)

- Blondel scheme for 100 fb⁻¹ for each helicity state: δP(e⁻)/P(e⁻) = 0.1%, δP(e⁺)/P(e⁺) = 0.2%
- from dσ/d cos θ: large cos θ
 t-channel domianted, P
 changes relative contribution of
 t-channel
- contribution of new physics?
 ⇒ common determination with triple gauge couplings

fit yields for 20 fb^{-1} : $P(e^{-}) = 80.17 \pm 0.15$, $P(e^{+}) = 60.10 \pm 0.20$ (no backgrounds yet)