#### **Charmonium-Like States at the B Factories**

#### Arafat Gabareen Mokhtar SLAC National Accelerator Laboratory

**DESY** Hamburg & **DESY** ZEUTHEN

Hamburg & Berlin July 20<sup>th</sup> & 21<sup>st</sup>, 2010





# The Discovery of $J/\psi$

- <u>**1974 Nov.**</u> Revolution: SLAC & BNL discovered independently the J &  $\psi$  particle <u>PRL 33, 1406 (1974); PRL 33, 1404 (1974)</u>
- This discovery was another potential evidence for the charm quark
- Strong confirmation of the quark model



- J/ $\psi$  can couple directly to virtual photons produced in e<sup>+</sup>e<sup>-</sup> collisions
- Burton <u>Richter</u> (SLAC) & Samuel <u>Ting</u> (MIT) were awarded the <u>Nobel Prize</u> in 1976 for the J/ψ discovery

#### The discovery of $\psi$ ' <u>PRL 33, 1453 (1974)</u>

Discovery of a Second Narrow Resonance in  $e^+e^-$  Annihilation\*†

G. S. Abrams, D. Briggs, W. Chinowsky, C. E. Friedberg, G. Goldhaber, R. J. Hollebeek, J. A. Kadyk, A. Litke, B. Lulu, F. Pierre, <sup>‡</sup>B. Sadoulet, G. H. Trilling, J. S. Whitaker, J. Wiss, and J. E. Zipse
Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 9472

and

J.-E. Augustin, § A. M. Boyarski, M. Breidenbach, F. Bulos, G. J. Feldman, G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie, § R. R. Larsen, V. Luth, H. L. Lynch, D. Lyon, C. C. Morehouse, J. M. Paterson, M. L. Perl, B. Richter, P. Rapidis, R. F. Schwitters, W. Tanenbaum, and F. Vannucci

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 November 1974)

We have observed a second sharp peak in the cross section for  $e^+e^- \rightarrow$  hadrons at a center-of-mass energy of  $3.695 \pm 0.004$  GeV. The upper limit of the full width at half-maximum is 2.7 MeV.





Computer reconstruction of the decay of a  $\psi'$ , an excited state of the  $J/\psi$ , as measured in the Mark I detector at SLAC in 1974

#### **Charmonium Basic Theoretical Description**

- Charmonium potential models (phenomenological):
  - **non-relativistic** (charm quark is "heavy" compared to binding energy)
  - quark confinement (increases linearly with separation)
  - simple QCD-inspired phenomenological potential (Cornell model) :

$$V(r) = -\frac{\kappa}{r} + \frac{r}{a^2}, \ \kappa = 0.61, m_c = 1.84 \text{ GeV}, a = 2.38 \text{ GeV}^{-1}$$

Eichten et. al., PRD 17, 3090 (1978) Godfrey & Isgur, PRD 32, 189 (1985) Barnes et. al., PRD 72, 054026 (2005)

- Potential is Coulomb-like for small radius and Harmonic Oscillator like for large radius.
- The model can be extended to include spin-dependent terms, relativistic corrections, etc.
- Lattice QCD predicts the masses and widths of charmonium states

# The Quark Model

- Gell-Mann/Zweig Quark Model: <u>M. Gell-Mann PL 8, 214 (1964)</u>
   "Baryons can now be constructed from quarks using combinations (qqq), (qqqqq), etc., while mesons are made of (qq), (qqqq), etc."
- Gell-Mann:  $\mathbf{q}\overline{\mathbf{q}}$  for mesons, but  $\mathbf{q}\overline{\mathbf{q}}\mathbf{q}\overline{\mathbf{q}}$  were not a priori excluded
- We have been seeking evidence for the higher configuration states
- Baryon sector: resonant structure in KN system  $\rightarrow$  five-quark state
- Many searches for pentaquark baryons have been performed. Most prominent candidate is  $\theta(1540)^+$ . Today: the existence of pentaquarks must be considered to be in doubt <u>G. Trilling, J. Phys. G 33, 1019 (2006)</u>
- Meson sector: attention has been focused over the years on  $a_0(980)$  and  $f_0(980)$  as possible four-quark states

Arafat G. Mokhtar (SLAC)

# **Charmonium States So Far**

#### • Charmonium is a cc̄ bound state ; Analogous to hydrogen, positronium

|                                        | Quantum numbers |   |     | umbers                                  | Name                        | Mass (MeV/c <sup>2</sup> ) | width(MeV)                 |
|----------------------------------------|-----------------|---|-----|-----------------------------------------|-----------------------------|----------------------------|----------------------------|
|                                        | N               | L | JPC | $N^{2S+1}L_1$                           |                             | <u>C. Amsler, et. a</u>    | I., PLB 667, 1 (2008)      |
| Notation:                              | 1               | 0 | 0-+ | 1 <sup>1</sup> S <sub>0</sub>           | η <sub>c</sub> (1S)         | 2980.4±1.2                 | 26.7±3                     |
| $^{2S+1}[L]_J$                         | 1               | 0 | 1   | 1 <sup>3</sup> S <sub>1</sub>           | J/w                         | 3096.916±0.011             | $93.2\pm0.02\times10^{-3}$ |
| L=S,P,D (0,1,2)<br>(No cand. with      | 1               | 1 | 0++ | 1 <sup>3</sup> P <sub>0</sub>           | $\chi_{c0}$ (1P)            | 3414.75±0.31               | 10.2±0.7                   |
| L>=3)                                  | 1               | 1 | 1++ | 1 <sup>3</sup> P <sub>1</sub>           | $\chi_{c1}(1P)$             | 3510.66±0.07               | $0.89{\pm}0.05$            |
| $\mathbf{J} = \mathbf{L} + \mathbf{S}$ | 1               | 1 | 2++ | 1 <sup>3</sup> P <sub>2</sub>           | $\chi_{c2}(1P)$             | 3556.20±0.09               | 2.03±0.12                  |
| $S(q\overline{q}) = 0 \text{ or } 1$   | 1               | 1 | 1+- | 1 <sup>1</sup> P <sub>1</sub>           | h <sub>c</sub> (1P)         | 3525.93±0.27               | <1                         |
| Parity: $\mathbf{P} = (-1)^{L+1}$      | 1               | 2 | 1   | 1 <sup>3</sup> D <sub>1</sub>           | ψ(3770)                     | 3772.92±0.35               | 27.3±1.0                   |
| Charge conjugation eigenvales:         | 2               | 0 | 0-+ | $2^{1}S_{0}$                            | $\eta_c(2S)$                | 3637±4                     | 14±7                       |
| C=(-1) <sup>L+S</sup>                  | 2               | 0 | 1   | $2^{3}S_{1}$                            | ψ( <b>2</b> S)              | 3686.09±0.04               | 317±9 ×10 <sup>-3</sup>    |
| N: Radial                              | 2               | 1 | 2++ | 2 <sup>3</sup> P <sub>2</sub>           | $\chi_{c2}(2P)$             | 3929±5                     | 29±10                      |
| Quantum<br>Numbers                     | 3               | 0 | 1   | 3 <sup>3</sup> S <sub>1</sub>           | ψ(4040)                     | 4039±1                     | 80±10                      |
|                                        | 2               | 2 | 1   | 2 <sup>3</sup> D <sub>1</sub>           | ψ(4160)                     | 4153±3                     | 103±8                      |
| Arafat G. Mokhtar (SLAC)               | 4               | 0 | 1   | 4 <sup>3</sup> S <sub>1</sub><br>Charme | ψ(4415)<br>onium-like State | 4421±4                     | 62±20                      |

#### **Charmonium-like States**

• Charmonium-like states are particles that usually decay to  $c\bar{c}$  state and others (e.g.  $X \rightarrow J/\psi \pi^+\pi^-$ ) but not yet clear if it is consistent with a conventional  $c\bar{c}$  states

• Their <u>nature</u> has <u>not</u> yet been completely <u>understood</u>

• Some of their decay modes are as expected; others are puzzling

• Their spin-parity assignment are NOT yet established

# **Production of c c̄-States**

- Color-suppressed  $b \rightarrow c$  decay
  - Predominantly from <u>**B-meson**</u> decays
- e<sup>+</sup>e<sup>-</sup> Initial State Radiation (<u>ISR</u>)
  - e<sup>+</sup>e<sup>-</sup> collision below nominal c.m. energy
    J<sup>PC</sup>=1<sup>--</sup>
- **Double** charmonium production
  - Typically one  $J/\psi$  or  $\psi$ , plus second  $c\bar{c}$  state
- **Two-photon** production
  - Access to C=+1 states
- pp /pp interactions (Tevatron)
  - All quantum numbers available

Arafat G. Mokhtar (SLAC)



#### **Charmonium States**

- Many states are predicted above open charm threshold
- <u>All predicted</u> states below the open charm threshold have been observed
- During the last several years, many states have been discovered above the open charm threshold; Not always their properties agree with the cc predictions



- QCD allows for more "exotic" possibilities
  hybrids, tetraquark states, four-quark molecules
- Are we seeing the **<u>first evidence</u>** of something **new** or **different**?

#### **Proposed Alternative Models-I**



**Molecular** 

Loosely bound state of a pair of mesons. The dominant binding mechanism should be **pion exchange**. Being weakly bound the mesons tend to decay as if they were free NA Tornqvist PLB 590, 209 (2004); ES Swanson PLB 598, 197 (2004); E Braaten & T Kusunoki PRD 69, 074005 (2004); CY Wong PRC 69, 055202 (2004); M. Voloshin PLB 579, 316 (2004); F Close & P Page PLB 578, 119 (2004); X Liu arXiv:0708.4167



#### **Tetraquark**

Bound state of four quarks, i.e.  $\mathbf{q}\overline{\mathbf{q}}\mathbf{q}\overline{\mathbf{q}}$  in which the quarks group into color triplet scalar or vector clusters.

Strong decays proceed via rearrangement processes

L Maiani et al PRD 71, 014028 (2005); T-W Chiu & TH Hsieh PRD 73, 111503 (2006); D Ebert et. al., PLB 634, 214 (2006)

#### **Distinctive features of multi-quark picture with respect to charmonium:**

- prediction of many new states
- possible existence of states with non-zero charge, strangeness or both.

#### **Proposed Alternative Models-II**



#### **Charmonium hybrids**

States with excited gluonic degrees of freedom;  $0^{+-}$ ,  $1^{-+}$ ,  $2^{+-}$ ...quantum numbers are not possible for  $c\bar{c}$  states, but are possible for hybrids; would unambiguously signal an exotic state.

Lattice and potential model predictions for the lowest-mass hybrid:  $m \sim 4.2 \text{ GeV/c}^2$ 

P Lacock et al (UKQCD) PLB 401, 308 (1997); SL Zhu PLB 625, 212 (2005); F. Close, PR Page PLB 628, 215 (2005); E Kou &O Pene PLB 631, 164 (2005)

C

<u>DR</u>

**Conventional** charmonium

C. Meng & KT Chao, PRD 75, 114002 (2007); O. Zhang, C Meng & HQ Zheng arXiv:0901.1553

#### <u>OR</u>

*Threshold*, *cusp*, or coupled-channel effect giving a cross section enhancement which may not correspond to resonance production at all

#### The Theme of the B Factories

- The B-factories were built to study charge and parity (CP) symmetry violation
- Redundant measurements of CP violation in the B<sup>0</sup> system, and to probe possible physics beyond the SM
- With these mesons, we can study at the same time three elements of the **<u>quark mixing matrix</u>**



Yoichiro Nambu



**2008 Physics Nobel Prize** 



Makoto Kobayashi Toshihide Maskawa

*BABAR* and Belle's experimental <u>evidence</u> of <u>CP violation</u> in asymmetric B<sup>0</sup> and  $\overline{B}^0$  decays into CP eigenstates provided <u>verification</u> of the Kobayashi-Maskawa model predictions of a  $3 \times 3$  quark mixing matrix with a complex phase.



# The BABAR Data-Taking



Arafat G. Mokhtar (SLAC)

#### Highlights From the Y(3S) and Y(2S) Data

- $\Upsilon(3S)$  &  $\Upsilon(2S)$  samples:
  - search for new physics such as lighthiggs boson and light dark matter (PRL103, 081803 (2009); PRL 103, 181801 (2009); hepex/0808.0017)



- Study bottomonium physics, in particular search for the bottomonium ground state,  $\eta_b(1S)$
- 2008: *BABAR* observed the  $\eta_b(1S)$  signal in  $\Upsilon(3S) \rightarrow \gamma \eta_b \& \Upsilon(2S) \rightarrow \gamma \eta_b (\underline{PRL \ 101, \ 071801} (2008) \& \underline{PRL \ 103, \ 161801 \ (2009)})$







Arafat G. Mokhtar (SLAC)

#### The X(3872): the Belle Discovery

#### • Discovered in B $\rightarrow$ XK, X $\rightarrow$ J/ $\psi \pi^+ \pi^-$



#### The X(3872): The Confirmation



Arafat G. Mokhtar (SLAC)

#### The X(3872):BABAR Full Dataset



Tetraquark models:  $\Delta m = |m(3872)K^+ - m(3872)K_S^0| = 8 \pm 3 \text{ MeV/c}^2$ BABAR :  $\Delta m = (2.7 \pm 1.6 \pm 0.4) \text{ MeV/c}^2$ 

 $BF(B^+ \rightarrow XK^+, X \rightarrow J/\psi \pi^+ \pi^-) = (8.4 \pm 1.5 \pm 0.7) \times 10^{-6}$ 

 $BF(B^0 \rightarrow XK^0, X \rightarrow J/\psi \pi^+\pi^-) = (3.5 \pm 1.9 \pm 0.4) \times 10^{-6} < 6.0 \times 10^{-6} @ 90\% \text{ C.L.}$ 

 $R(X) = BF(B^0)/BF(B^+) = 0.41 \pm 0.24 \pm 0.05$  (Molecular models predict R(X) < 0.1)

Γ(X)<3.3 MeV @ 90% C.L.

#### **The Di-pion Mass Distribution**



- Belle and CDF analyzed the π<sup>+</sup>π<sup>-</sup> mass distribution;
   both described in terms of ρ-like shape
- Belle favors  $J^{PC} = 1^{++}$  (S-wave); CDF either  $1^{++}$  or  $2^{-+}$  (P-wave, with  $\omega$ - $\rho$  interference)
- Shape in *BABAR* is similar; no attempt to fit the mass spectrum



ππ Mass [GeV/c<sup>2</sup>]

#### The X(3872): Charged Partner?

**The X(3872):** Constant of the X(3872) in the decay mode  $\mathbf{B} \rightarrow \mathbf{J}/\psi\pi^{*}\pi^{0}\mathbf{K}$ , using 234 million  $\mathbf{B}\overline{\mathbf{B}}$ 

 $> B(B^0 \rightarrow X^-K^+, X^- \rightarrow J/\psi \pi^- \pi^0) < 5.4 \times 10^{-6} @ 90\% C.L.$  $> B(B^{-} \rightarrow X^{-}K^{0}, X^{-} \rightarrow J/\psi \pi^{-}\pi^{0}) < 22 \times 10^{-6} @ 90\% C.L.$ 

#### **Isovector** hypothesis excluded **>** I=0

This search could be repeated with the full datasets at the B-factories (~2 times @ BABAR and ~4 times @ Belle)







#### The X(3872): Largest Data Sample



• This provides the most precise mass measurement of the X(3872):

m=3871.61 $\pm$ 0.16 $\pm$ 0.19 MeV/c<sup>2</sup>

 $m(D^0) + m(\overline{D}{}^{0*}){=}3871.8{\pm}0.4~MeV/c^2$ 

• PDG: m=3872.2 $\pm$ 0.8 MeV/c<sup>2</sup>, but includes D<sup>0</sup> $\overline{D}^{*0}$  measurements; J/ $\psi\pi^{+}\pi^{-}$  alone gives 3871.4 $\pm$ 0.6 MeV/c<sup>2</sup>

•  $D^0\overline{D}^{*0}$  mass shift could result from one unit of orbital angular momentum  $\rightarrow J^P=2^-$ 

Dunwoodie and Ziegler

PRL 100, 062066 (2008)

# The X(3872): Questions

□ Are the X(3872) and the X(3875) the same state? If it is related to a mass shift, then they are one state...

 $\Box$  If they are the <u>same state</u>, how can the <u>mass shift</u> be <u>explained</u>?

 $D^0\overline{D}^{*0}$  mass shift could result from one unit of orbital angular momentum  $\rightarrow J^P=2^-$ Dunwoodie and Ziegler *PRL 100, 062066 (2008)* 

❑ What are the quantum numbers of the X(3872)? CDF: 1<sup>++</sup> or 2<sup>-+</sup> Belle: 1<sup>++</sup> BABAR: ???

 $\Box$  Could the X(3872) be a molecular bound state? Or just a conventional charmonium state?

#### *The Y*(3940)



# The Y(3940): The Discovery & Confirmation

\* The Y(3940) was discovered by Belle in  $B \rightarrow YK$ , Y $\rightarrow J/\psi\omega$  (Significance =  $8\sigma$ )

BABAR confirmed the Y(3940) existence but with a <u>lower mass</u> and a <u>narrower width</u>



|                                                                                                                        | Belle                 | BABAR                          |
|------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|
| Mass (MeV/c <sup>2</sup> )                                                                                             | 3943±11±13            | $3914.6^{+3.8}_{-3.4} \pm 2.0$ |
| Width (MeV)                                                                                                            | 87±22 ±26             | $34^{+12}_{-8}\pm 5$           |
| <b><i>BF</i></b> : B <sup>+</sup> $\rightarrow$ YK <sup>+</sup> , Y $\rightarrow$ J/ $\psi\omega$ (×10 <sup>-5</sup> ) | $7.1 \pm 1.3 \pm 3.1$ | $4.9^{+1.0}_{-0.9}\pm0.5$      |
| <b><i>BF</i></b> : B <sup>0</sup> $\rightarrow$ YK <sup>0</sup> , Y $\rightarrow$ J/ $\psi\omega$ (×10 <sup>-5</sup> ) | (Combined)            | $1.3^{+1.3}_{-1.1}\pm0.2$      |
| <b>BF</b> : B <sup>+</sup> $\rightarrow$ J/ $\psi \omega$ K <sup>+</sup> (×10 <sup>-4</sup> )                          | Not reported          | 3.5±0.2±0.4                    |
| <i>BF</i> : B <sup>0</sup> → J/ψωK <sup>0</sup> (×10 <sup>-4</sup> )                                                   | Not reported          | 3.1±0.6±0.3                    |



# The Y(3940): Reanalyzing the BABAR Data



Arafat G. Mokhtar (SLAC)

#### Fitting the Corrected Data

✓ Correct the yields for efficiency (4-7%) interval-by-interval ✓ Correct the B<sup>0</sup> sample for  $\mathbf{K}^{0}_{L} \& \mathbf{K}^{0}_{S} \rightarrow \pi^{0} \pi^{0}$ ✓ Perform simultaneous fit to B<sup>+</sup> and B<sup>0</sup> samples





How do we justify calling such a distribution  $\omega$  signal?

# The X(3872): Remarks

- X(3872)→ψγ (\*) → C=+1
- No X(3872)<sup>-</sup> → I=0
- X(3872) quantum numbers:
  - ο Belle:  $J^{PC} = 1^{++}$  favored (no ω-ρ interference)
  - CDF:  $\pi\pi$  mass & angular distribution  $\rightarrow$  J<sup>P</sup>= 1<sup>+</sup> or 2<sup>-</sup>
  - BABAR:  $J^P = 2^-$  is favored
- What is the <u>nature</u> of X(3872)?
  - $\circ$  Hybrid?.... BUT m(ccg)>4.2GeV/c<sup>2</sup>...
  - $\circ$  Tetraquark?... BUT No evidence for X(3872)<sup>-</sup>
  - Charmonium?... mass is OK for 2<sup>-+</sup> state ( $\eta_{c2}$ , the <sup>1</sup>D<sub>2</sub>  $c\bar{c}$  ground state)
  - Molecular?
    - ×  $m(D^0) + m(\overline{D}^{0*}) = 3871.8 \pm 0.4 \text{ MeV/c}^2$
    - ► Decays to  $X(3872) \rightarrow J/\psi\rho$ ,  $D^0D^{0*}$ ,  $J/\psi\omega$  expected
    - × Compatible with  $J^{PC} = 1^{++}$  assignment

\* " $\psi$ " denotes "J/ $\psi$  or  $\psi(2S)$ " unless otherwise indicated Arafat G. Mokhtar (SLAC) Charmonium-like States Belle: arXiv:0505038 BABAR: PRD 74, 071101(2006) PRL 102, 132001 (2009))

BABAR: PRD 71, 031501 (2005)

Belle: arXiv:0505038 (2005)

CDF: <u>PRL 96, 102002 (2006)</u> <u>PRL 98, 132002 (2007)</u>

BABAR: PRD 82, 011101 (2010)

#### *The Z(4430)*<sup>-</sup>





#### The Z(4430): The BABAR Search PRD 79, 112001 (2009)

- Search for the  $Z(4430)^-$  in four decay modes:  $B^{-0} \rightarrow \psi \pi^- K^{0+}$ (Four decay modes), using 413 fb<sup>-1</sup>
- Describe the  $K\pi^{-}$  system in detail, since structure in the  $K\pi^{-}$  mass and angular distributions dominates each Dalitz plot
- Subtract background, efficiency-correct event-by-event across the Dalitz plot; describe using only  $K\pi^-$  S-, P-, and D-wave intensity contributions
- Project each  $K\pi^{-}$  description onto the relevant  $\psi\pi^{-}$  mass distribution to investigate the need for Z(4430)<sup>-</sup> signal above this " $K\pi^{-}$  background"





#### The Z(4430)<sup>-</sup>: The Belle Dalitz-Plot Analysis

- In response to the <u>BABAR analysis</u>, Belle performed a Dalitz-Plot analysis
- In the new Belle analysis, a  $6.4\sigma$  signal significance was reported



# The Z(4430)<sup>-</sup>: BABAR & Belle Results

| Parameter                                                                                                                       | Belle                                  | Belle (DP)                            | BABAR                                 |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|
| $\mathbf{M}_{aaa}$ ( $\mathbf{M}_{a}\mathbf{M}_{a}^{2}$ )                                                                       | 4422 + 4 + 2                           | 4442 +15 +19                          | $J/\psi: 4455 \pm 8$                  |
| Mass (Mev/c <sup>2</sup> )                                                                                                      | $4433 \pm 4 \pm 2$                     | 4445-12 -13                           | $\psi(2S): 4476 \pm 8$                |
| Width (MaV)                                                                                                                     | <b>45</b> +18 +30                      | 107 +86 +74                           | $J/\psi$ : 42 ± 27                    |
| width (Mev)                                                                                                                     | 45-13 -13                              | 107_43 -56                            | $\psi(2S): 32 \pm 16$                 |
| $B(B^{0} \rightarrow Z^{-}K^{+}) \times B(Z^{-} \rightarrow \psi(2S)\pi^{-})$ (×10 <sup>-5</sup> )                              | 4.1±1.0±1.4                            | $3.2_{-0.9}^{+1.8}$                   | $1.9 \pm 0.8$                         |
| $\begin{array}{c} B(B^{-} \rightarrow Z^{-} K^{0}) \times B(Z^{-} \rightarrow \psi(2S)\pi^{-}) \\ (\times 10^{-5}) \end{array}$ |                                        | Not reported                          | $2.0 \pm 1.7$                         |
| $\begin{array}{c} B(B^{0} \rightarrow Z^{-}K^{+}) \times B(Z^{-} \rightarrow J/\psi\pi^{-}) \\ (\times 10^{-5}) \end{array}$    | Not reported                           |                                       | $-0.1 \pm 0.8$                        |
| $\begin{array}{c} B(B^{-} \rightarrow Z^{-} K^{0}) \times B(Z^{-} \rightarrow J/\psi \pi^{-}) \\ (\times 10^{-5}) \end{array}$  |                                        |                                       | $-1.2 \pm 0.4$                        |
| Significance                                                                                                                    | 6.5σ                                   | 6.4σ                                  | ψ(2S): 2-3σ                           |
|                                                                                                                                 | <b>Belle</b><br>PRL 100, 142001 (2008) | <b>Belle</b><br>PRD 80, 031104 (2009) | <b>BABAR</b><br>PRD 79, 112001 (2009) |

#### The $Z_1(4050)^{-}$ and $Z_2(4250)^{-}$



#### The $Z_1(4050)^-$ & $Z_2(4250)^-$ : The Belle Report

• Belle: Two more new signals,  $Z_1(4050)^-$  and  $Z_2(4250)^-$  in  $B \rightarrow Z^-K$ ,  $Z^- \rightarrow \chi_c \pi^-$ ,  $\chi_c \rightarrow \gamma J/\psi$ 

• The K $\pi$  mass region extends beyond the  $F_3^*(1780)$  F-wave  $\Rightarrow$  S-, P-, D-, and F- waves are kinematically allowed and used in the fit

• Data favor two signals hypothesis over one signal by  $5.7\sigma$ 

$$M_{1} = (4051 \pm 14^{+20}_{-41}) \text{ MeV}/c^{2},$$

$$\Gamma_{1} = (82^{+21+47}_{-17-22}) \text{ MeV},$$

$$M_{2} = (4248^{+44+180}_{-29-35}) \text{ MeV}/c^{2},$$

$$\Gamma_{2} = (177^{+54+316}_{-39-61}) \text{ MeV},$$

$$Z_{2}(4250)^{-1}$$

with the product branching fractions of

$$\mathcal{B}(\bar{B}^0 \to K^- Z_1^+) \times \mathcal{B}(Z_1^+ \to \pi^+ \chi_{c1}) = (3.0^{+1.5}_{-0.8} + 3.7_{-1.6}) \times 10^{-5},$$
  
$$\mathcal{B}(\bar{B}^0 \to K^- Z_2^+) \times \mathcal{B}(Z_2^+ \to \pi^+ \chi_{c1}) = (4.0^{+2.3}_{-0.9} + 10^{-5}_{-0.5}) \times 10^{-5},$$



Similar to those for X, Y, and  $Z(4430)^{-1}$ !

Arafat G. Mokhtar (SLAC)

#### *The Y(4140)*





#### The Y(4140): The CDF Report



Belle does <u>NOT confirm</u> the CDF <u>Y(4140)</u> state! (<u>PRL 104, 112004 (2010)</u>) Arafat G. Mokhtar (SLAC) Charmonium-like States

#### **ISR Production of Charmonium-like states**



• *BABAR*) has produced  $\sim 6 \times 10^8$ cc pairs at center of mass (c.m.) energy  $\sim 10.58$  GeV

• **ISR** can lead to the production of charmonium states at **lower c.m. energy** 

• The  $\gamma_{ISR}$  often escapes detection along the beam axis, and is treated as a missing particle

• The  $\gamma_{ISR}$  energy range **changes** the center of mass **energy** 

• <u>Several</u> charmonium states were **discovered** in **ISR** events

#### *The Y*(4260)



#### The Y(4260): The BABAR Observation

• Discovered by *BABAR* in ISR events:  $e^+e^- \rightarrow \gamma_{ISR} Y(4260) \rightarrow J/\psi \pi^+\pi^-$  (<u>PRL 95</u>, <u>142001 (2006)</u>)

Confirmed by CLEO-c (scan) [→
 I=0], CLEO III (ISR), and Belle (
 PRL 96, 162003 (2006), PRD 74, 091104 (2006), PRL 99, 142002 (2007)



• No evidence for  $Y(4260) \rightarrow \pi^+\pi^-\phi$ ,  $D\overline{D}$ ,  $p\overline{p}$  (<u>PRD 74, 091103 (2006)</u>, <u>PRD 76, 111105</u> (2007), <u>PRD 73, 012005 (2006)</u>)





#### *The Y(4350)*



#### The Y(4350): The BABAR Observation

- It was natural to search for the decay to  $Y(4260) \rightarrow \psi(2S)\pi^+\pi^-$
- BABAR found a new peak that did not match the Y(4260)!
- Seems to be a **different structure**:  $- M = 4324 \pm 24 \text{ MeV/c}^2$   $- \Gamma = 172 \pm 33 \text{ MeV}$ Substituting the set of the

 $e^+e^-$  requires this state to be  $J^{PC} = 1^{--} \rightarrow$  overpopulated

• Seems impossible to assign both as charmonium; however, there are two  $c\bar{c} \ 1^{--}$  states, which might mix to yield the observed spectrum

Arafat G. Mokhtar (SLAC)

#### The Y(4350): The Belle Confirmation



#### *The Z(3930)*



#### **Two-Photon Production: The Z(3930)**



#### *The Y*(3915)



#### **Two-Photon Production: The X(3915)**



#### The 4 states near 3940



#### *The X*(3940)



#### **Double Charmonium Production**

- Belle discovered X(3940) in double charmonium production:  $e^+e^- \rightarrow J/\psi X(3940)$
- Are X(3940) and Y(3940) the same state?
- This discovery needs confirmation...



#### Summary-I



#### Summary-II

- At the **<u>B</u> Factories**, many charmonium-like states were discovered
- The nature of these states is not yet completely understood
- Among them, the charged states reported by Belle are most puzzling...
- More data are needed to understand the nature of these states
- The LHC experiments have the potential to improve our understanding of these states
- Super-B (Belle-II) with ~50-100 times more statistics, many properties of these charmonium-like states will be understood
- With ~1/ab of data, many charmonium-like states have been discovered; no reason to believe that this won't continue in the many-ab<sup>-1</sup> territory

# Backup Slides

Arafat G. Mokhtar (SLAC)

#### The PEP-II Storage Rings at SLAC

Positron – Electron Proton Project (original idea) Pre LCLS ! Positron – Electron Project Symmetric-energy collidersingle ring Positron – Electron Project II Asymmetric-energy collider-**HER**: old PEP ring **LER**: new ring built on top  $\mathbf{L}$ End Station A of HER **DIS / partons SPEAR / SSRL**  $J/\psi$ , charm mesons,  $\tau$  lepton SLAC/LBL/LLNL **SLAC-Based B Factory: PEP-II and BABAR** LER High Energy Ring pgrade of existing ring) oth Rings Housed in Current PE BaBar **SLC / SLD** HER





Williams piloting from Bidg 750 (bottom of pict World Models Super Frontier 80" spor ony U30 2 MP looking straight down -switch by www.rc-com.com electric brushless mator altitude 1500' Picture-Tt software \* Feb 28, 2004 e bix at www.bam-nc and

**Precision Z studies** 

#### **PEP-II & BABAR Detector**



#### **Publication Factories**



B Factories are also publication factories!

# BABAR Publications & Ph.D.'s as of June/2010







| Journal | #Publications |
|---------|---------------|
| PRD-RC  | 141           |
| PRD     | 97            |
| PRL     | 187           |
| Others  | 2             |
| Total   | 427           |

#### What a performance!



Arafat G. Mokhtar (SLAC)



# **Dalitz-Plot Weighting Technique**

Each event is given weight of  $(5/2)(1-3\cos^2\theta_h)$ , where  $\theta_h$  is the angle between the  $\pi^+$ and  $\pi^0$  in the  $\pi^+\pi^-$  rest frame

Non-ω events projected away

