The LCLS: Where we are and where we are going

J. B. Hastings for the LCLS May 18, 2010

SLAC National Accelerator Laboratory

Acknowledgements

Thanks to...

- The extraordinary commissioning <u>team</u> at SLAC!
- The operations, metrology, engineering, controls, installation, and RF groups at SLAC
- The tremendous undulator and cavity-BPM team at ANL – GREAT JOB!
- John Galayda (project director) for his leadership and confidence in the team
- And to the many people, who have contributed your ideas, comments, codes, and many years of <u>experience</u> toward the design and operation of this revolutionary new light source – 17 yrs later

Finally **Paul Emma**

E. Muybridge

1878: E. Muybridge at Stanford Tracing motion of animals by spark photography

E. Muybridge, Animals in Motion, ed. by L. S. Brown (Dover Pub. Co., New York 1957).

The Vision...

John Madey, 1971

JOURNAL OF APPLIED PHYSICS

VOLUME 42, NUMBER 5

APRIL 1971

Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field

JOHN M. J. MADEY

Physics Department, Stanford University, Stanford, California 94305 (Received 20 February 1970; in final form 21 August 1970)

The Weizsäcker-Williams method is used to calculate the gain due to the induced emission of radiation into a single electromagnetic mode parallel to the motion of a relativistic electron through a periodic transverse dc magnetic field. Finite gain is available from the far-infrared through the visible region raising the possibility of continuously tunable amplifiers and oscillators at these frequencies with the further possibility of partially coherent radiation sources in the ultraviolet and x-ray regions to beyond 10 keV. Several numerical examples are considered.

"...possibility of partially coherent radiation sources in the ... x-ray regions to beyond 10 keV."

Hard X-ray FELs

- *Euro X-FEL* at DESY (0.1-6 nm)
- SCSS at Spring8 in Japan (0.1-3.6 nm)
- **PSI-FEL** in Switzerland (0.1-7 nm)
- LCLS at SLAC in USA (0.15-1.5 nm)

...and many soft x-ray FELs taking shape around the globe

This talk will concentrate on *LCLS*, with first lasing and FEL saturation at 1.5 Å...

Good Up-Time and Performance (24-hr plot)

X-ray FEL requires extremely bright *e*⁻ beam

Power grows exponentially with undulator distance, z

$$\mathbf{P} \propto ext{exp} \left(rac{\mathbf{z}}{\mathbf{L}_{\mathbf{G}}}
ight)$$

...but only if time-sliced energy spread << 0.1% and the transverse emittance is $\sim \lambda_1/4\pi$ (<1 μ m)

time-sliced emittance

...power gain length: $L_G \propto \left(\frac{\varepsilon}{T}\right)$

 $L_G \propto \left(\frac{\varepsilon}{I}\right)^{1/3}$ local peak current

FEL power reaches *saturation* at ~20L_G
 SASE performance depends *exponentially* on *e⁻* beam quality (emittance & peak current) ! Z. Huang

Paul Emma has shown this slide many times over the years...

LCLS requires very bright electron beam (emittance)...

SASE FEL is not forgiving — instead of mild luminosity loss, power nearly switches **OFF**

electron beam *must* meet brightness requirements

Linac Coherent Light Source at SLAC

X-FEL based on last 1-km of existing 3-km linac

1.5-15 Å Injector (35%) (14-4.3 GeV) Existing 1/3 Linac (1 km) (with modifications)

New e Transfer Line (340 m)

X-raý Transport Liñe (200 m)

Undulator (130 m) - Near Experiment Hall

-Far Experiment Hall

Argonne

LCLS Machine Layout

- Accelerator is last 1-km of SLAC linac (14 GeV)
- RF photocathode gun and off-axis injector
- Two bunch compressors + 'laser heater'
- Two transverse RF deflectors for time-resolved beam measurements
- X-band (12 GHz) compression linearizer
- 4 emittance diagnostic stations + 4 spectrometers
- Primary and secondary collimation sections
- Fixed gap, planar, 132-m undulator at 14 GeV + 1- μ m res. RF BPMs
- Near and Far Experimental Halls + 500 m of x-ray transport

Commissioning of the *LCLS*

- Laser, gun, & injector commissioned: 2007
- Linac & bunch compressors commissioned: 2008
- First beam through undulator beamline: Dec. 13, 2008
- 21 undulator magnets installed & ready: April 7, 2009
- First lasing at 1.5 Å: April 10, 2009 (first try!)
- 1.5 Å FEL saturation observed: April 14, 2009 (after BBA)
 - First user run: AMO Oct.-Dec. 2009
 - Second user run: AMO;SXR May-Sept. 2009

Injector Transverse Projected Emittance <0.5 µm

Exceptional beam quality from S-band Cu-cath. RF gun...

D. Dowell

Time-sliced emittance: 0.3-0.4 µm

132 meters of FEL Undulator Installed Argonne

All 33 undulators installed July 22, 2009

Undulator Girder with 5-DOF Motion Control + IN/OUT

First Attempts at FEL Lasing – April 10, 2009...

- 21 undulator magnets installed (slots 13-33)
- Reduce peak current to 500 A (normally 3000 A)
- Use beam screen installed 50 meters past undulator (FEE diagnostics not ready until late June)
- Insert one undulator magnet at a time. Correct orbit, check field integrals, & spontaneous radiation pattern
- After 10 undulators inserted, we begin to see a smaller spot at center of screen (still 500 A)
- So we insert 12 undulators and then slowly raise the peak current back to 3 kA...

Undulator Gain Length Measurement at 1.5 Å: 3.3 m

FEL e⁻ Energy-Loss Shows >2 mJ per X-ray Pulse

Transverse Electron Jitter (position & angle)

Normalized phase space centroid jitter after BC1 (~4% of rms beam size)

... near end of linac (~12% of rms beam size, but sometimes larger)

Thanks to Controls group for new BPM electronics!

 $\Delta E/E$ jitter $\approx 0.03\%$ $\Delta Q/Q$ jitter $\approx 1.5\%$

Q = 0.25 nC

Measuring Bunch Arrival Time Jitter with an RF Deflector

Timing Jitter = (110 μ m)/(2.34 mm/deg) = 0.047 deg \Rightarrow 46 fsec rms

9 μ m rms

 $\Delta t \approx \pm 0.6$ ps

110 *µ*m rms

Photon beam characteristics

• FELs

- Short pulse fs to as
- 'Full' transverse coherence
- High peak power
- High field strengths
- Unmatched peak brilliance

$$P_{sat} \cong \rho E_{GeV} I_{Amp}$$
 ~ GWS

Atomic Molecular Optical (AMO) Science Instrument

The AMO instrument is 4 distinct vacuum chambers with different functions

CH₄ clusters to explore the physics relevant to protein imaging

H. Thomas

- K. Hoffmann
- N. Kandadai
- A. Helal
- B. Erk
- J. Keto
- T. Ditmire

Uppsala University, Uppsala, Sweden

- B. Iwan
- N. Timneanu
- J. Andreasson
- M. Seibert
- J. Hajdu (also Stanford)

Institut für Optik und Atomare Physik, Technische Universität Berlin

- S. Schorb
- T. Gorkhover
- D. Rupp
- M. Adolph T. Möller
- I. Moller

<u>Department of Physics, The Ohio State University</u> G. Doumy L.F. DiMauro

<u>LCLS, Stanford Linear Accelerator Center</u> C. Bostedt

J. Bozek

<u>Department of Physics, Western Michigan University</u> M. Hoener

- B. Murphy (formerly at UT)
- N. Berrah

Methane cluster

Well known simulation of exploding protein molecule in an XFEL pulse

Irradiation of methane clusters yielded surprising results

Possible explanation: recombination of the carbon ions in a

<u>LCLS / SLAC</u> Christoph Bostedt (PI), John Bozek, et al.

<u>TU-Berlin</u> Marcus Adolph, Daniela Rupp, Sebastian Schorb, Tais Gorkover, Thomas Möller

Max-Planck ASG Sascha Epp, Lutz Foucar, Robert Hartmann, Daniel Rolles, Artem Rudenko, et al.,

Project leaders: I. Schlichting, L. Strüder, J. Ullrich

Non-linear cluster ionization

Clusters as "nanolab" bulk density no energy dissipation intr- vs. interatomc effects

Driving questions:

mechanism of absorption and ionization are non-linear / multi-photo processes observed? time scale of electron emission and of ion motion

λ= 100nm (2002) 13 nm (2005) 1 nm (now)

Cluster physics yields insight into the fundamental questions on light – matter interaction

医手术性 计输出 化结构 医马克尔氏 化石油 化乙酰氨基 化乙酰氨基 化乙酰氨基 化乙酰氨基 化乙酰氨基

医白细胞 网络伦尔斯特姓氏伦尔特尔斯特尔特住所名称的变形 化丁基苯基苯基丁基苯基苯基丁基

CAMP-Chamber

simultaneous detection of ions, electrons and scattered light

L. Strüder et al. Nucl. Instr. Meth. A 610, 483 (2010)

Single shot recording

Singe cluster ionisation vs scattering

i.e., light – matter interaction with a single nanoparticle

Conclusions on cluster ionization so far

Intense X-ray ionisation and expansion of large clusters

What is the fate of the hot cluster core? 90 % of the all atoms ! Deviates from current understanding of short-wavelength laser – matter interaction Challenge for theory

LCLS-II Requirements

- Build new soft x-ray line from 200 to 2000+ eV
- Extend hard x-rays out to ~20 keV
- Include seeding options for narrow BW
- Incorporate 2-pulse, 2-color schemes
- Provide polarization control
- Take advantage of 3-km SLAC linac to provide separate sources for independent FELs
- Explore multi-bunch operations
- Find ways to increase capacity (user access)!

LCLS-II: New Injector & Accelerator

Use 2nd km of SLAC linac (sector-10 to 20) – greater flexibility

3-7 GeV energy (no SLED) allows possible 360-Hz beam rate

- 2nd injector, linac, & bypass line allows 2+ independent FELs serving 2 experiments simultaneously with flexible parameters
- Combining beams allows x-ray pump/probe with decoupled wavelengths, pulse width, energy, and timing
 - Preserves possibility of 22-30 GeV (and still 1 more km left!)

Phased Enhancement Plan for LCLS-II FELs

No civil construction. Uses existing beam energy and quailty.

* G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009)

Fast Path to Producing FEL 2nd Harmonic

16 keV = 0.75 Å (up to 20 keV at 15 GeV)

LCLS Beam Supports 25-keV (0.5 Å) FEL at 14 GeV

increase undulator gap further

The next 6 slides will graphically outline 6 *LCLS-II* operating modes...

(thanks to H.-D. Nuhn)

- **1. Hard X-ray SASE**
- 2. Soft X-ray SASE
- 3. Soft X-ray Self Seeding
- **4.** Two-pulse, two-color soft x-rays (one e^- bunch)
- **5.** Two-pulse, two-color soft x-rays (two e^- bunches)
- 6. Seeded soft x-ray FEL ('Echo')
- 7. Self Seeding of hard x-rays (two *e⁻* bunches)

2nd harmonic after-burner in 2010 (0.62-12 Å, 1-2 GW)
 Open all 33 undulator gaps for *LCLS-II* (0.62-12 Å, 10-20 GW)
 Or (?) replace all with variable gap (0.62-25 Å, >20 GW)

Z. Huang, S. Reiche, FEL'04, 201, (2004).

Full polarization control (fast at 80% or slow at ~100%)

Y. Ding, Z. Huang, Phys. Rev. ST-AB **11**, 030702

SX1 pulse passes monochromator and seeds SX2 pulse
 Narrow bandwidth pulse to <10⁻⁴ FWHM (6-60 Å)
 Can also use chirped bunch to generate short pulse (<50 fs)

J. Feldhaus et al., Opt. Commun. 140, 341 (1997).

4. LCLS-II: SX1 & 2 SASE, <u>One</u>-Bunch, Two-Color

- One e⁻ bunch produces 2 SXR pulses (0-15 ps separation) for pump probe
- Deliver both pulses to one experiment or split them to two
- SX2 pulse color (λ_2) must be longer wavelength than SX1 (λ_1)

Angled SX2 suggested by J. Hastings and P. Heimann

5. LCLS-II: SX1 & 2 SASE, <u>Two</u>-Bunch, Two-Color

- Two e⁻ bunches 10-100 ns apart (no pump probe here)
- One fast kicker & one DC each bunch lases in just one FEL
- Allows 2 SXR experiments simultaneously (user doubler)
- Two colors can be any value (6-60 Å)

Suggested by J. Frisch and independently by R. Brinkmann et al.

6. LCLS-II: Echo Seeding of SX1 or SX2

- External seeding (~30-60 Å) using Echo-Enhanced Harmonic Generation (EEHG*) – not in LCLS-II baseline at present
- Allows narrow BW and longitudinal coherence
- Under study now at NLCTA (SLAC)

* G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009)

LCLS-II Timeline, Compatible with Operations

LCLS-II Accelerator Summary

Soft X-Rays:

- 2-pulse, 2-color, variable delay (6-60 Å) using 1 e⁻ bunch or 2
- Self-seeding for narrow bandwidth (~10⁻⁴ at 6-60 Å)
- Full polarization control in SASE and self-seeded modes (fast & slow)
- 3-7 GeV bypass line allows simultaneous soft and hard x-ray operations in two separate beamlines with completely independent parameters
- Single femtosecond near-transform limited spike in low-charge mode

Hard X-Rays:

- Harder x-rays (0.62 Å) by modifying all undulators
- Few femtosecond pulses possible in low-charge mode
- Full polarization control
- Self-seeding with 2 electron bunches and short chicane (4 m)
- And... 22-30 GeV still possible using both 1-km linacs (+ 3rd km still open)

Photon Beam Distribution

