

Probing the nature of Higgs physics with the latest experimental results

Georg Weiglein,

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Finally: Dark Matter produced in the laboratory!

- Introduction
- Properties of the observed Higgs boson at 125 GeV
- Analysis of possible hints from searches for additional Higgs bosons
- Conclusions

Introduction

A bit more than 10 years after the discovery of the Higgs boson at 125 GeV (h125): high-precision measurement of the mass, detailed investigations of inclusive and differential rates

Properties of the detected Higgs boson (h125)

\Rightarrow Agrees with predictions of the Brout-Englert-Higgs (BEH) mechanism $_{5}$

The Brout-Englert-Higgs (BEH) mechanism and the structure of the vacuum

BEH mechanism, spontaneous symmetry breaking: vacuum state does not obey the underlying symmetry principle (gauge invariance) BEH mechanism ⇔ non-trivial structure of the vacuum

What is the underlying dynamics of electroweak symmetry breaking?

The vacuum structure is caused by the Higgs field through the Higgs potential. We lack a deeper understanding of this!

We do not know where the Higgs potential that causes the structure of the vacuum actually comes from and which form of the potential is realised in nature. Experimental input is needed to clarify this!

Single doublet or extended Higgs sector? (new symmetry?)

Fundamental scalar or compositeness? (new interaction?)

Higgs potential: the "holy grail" of particle physics

Crucial questions related to electroweak symmetry breaking: what is the form of the Higgs potential and how does it arise?

Information about these questions can be obtained from the trilinear Higgs self-coupling, which will be a main focus of the experimental and theoretical activities in particle physics during the coming years

Trilinear Higgs self-coupling: experimental situation

The measurement of the trilinear Higgs self-coupling λ_{hhh} is a prime experimental goal, but a coupling by itself is not a physical observable

Experimental access via Higgs pair production (or indirectly via loop contributions involving λ_{hhh}):

> Double-Higgs production $\rightarrow \lambda_{hhh}$ enters at LO \rightarrow most direct probe of λ_{hhh}

[Note: Single-Higgs production (EW precision observables) $\rightarrow \lambda_{hhh}$ enters at NLO (NNLO)]

Box and triangle diagrams interfere destructively \Rightarrow Small cross section in the SM, can be much enhanced if λ_{hhh} deviates from the SM value

Current experimental bound on the signal strength of Higgs pair production: $\mu_{hh} < 2.4$ [ATLAS Collaboration '22]

Experimental limit on Higgs pair production has been translated (taking into account also indirect information from single-Higgs production) into a limit on $\chi_{\lambda} = \lambda_{hhh} / \lambda_{hhh}^{SM, 0}$ under the assumption that new physics only affects the trilinear Higgs self-coupling:

The Higgs potential and the electroweak phase transition (EWPT)

Temperature evolution of the Higgs potential in the early universe:

EWPT: are there additional sources for CP violation in the Higgs sector?

Baryogenesis: creation of the asymmetry between matter and antimatter in the universe requires a strong first-order electroweak phase transition (EWPT)

First-order EWPT does not work in the SM The amount of CP violation in the SM (induced by the CKM phase) is not sufficient to explain the observed asymmetry between matter and anti-matter in the universe

First-order EWPT can be realised in extended Higgs sectors could give rise to detectable gravitational wave signal

⇒ Search for additional sources of CP violation

But: strong experimental constraints from limits on electric dipole moments (EDMs)

Probing the nature of Higgs physics with the latest experimental results, Georg Weiglein, DESY Particle and Astroparticle Physics Colloquium, Hamburg, 10 / 2022

12

Comparison between experiment and theory

Comparison between experiment and theory for the properties of h125 requires a high level of sophistication in the predictions for signal and background processes at the LHC

Example: inclusive Higgs production, total cross section (heavy top limit)

13

Full theory vs. heavy top limit: H inclusive and H + jet

Renormalisation scheme uncertainties

Scheme uncertainties of similar size also for other processes:

[M. Kerner '22]

16

ZH production (using SecDec & HE expansion) Chen, Davies, Heinrich, Jones, MK, Mishima, Schlenk, Steinhauser 22

Scheme uncertainty typically reduced by factor of ~2 going from LO to NLO, but still O(20-50%) at large \sqrt{s} , p_T

Estimate of electroweak corrections: parameterisation in terms of G_{F} vs. $\alpha,$ etc.

Higgs pair production, prediction and uncertainties

[M. Mühlleitner, J. Schlenk, M. Spira '22] [J. Davies et al. '22]

Comparison between experiment and theory

• Properties of h125:

The comparison between experiment and theory is carried out at the level of signal strengths, STXS, fiducial cross sections, ..., and to a lesser extent for x parameters (signal strength modifiers; see example of x_{λ} below) and coefficients of EFT operators

Public tools for confronting the experimental results with model predictions: *HiggsSignals* (signal strengths, STXS), *Lilith* (signal strengths), ...

New versions: *HiggsTools* [H. Bahl et al. '22]

18

 Limits from the searches for additional Higgs bosons: Public tools for reinterpretation / recasting of experimental results: *HiggsBounds* (limits on σ x BR, full likelihood information incorporated where provided by exp. collaborations) Recasting tools: *MadAnalysis 5, Rivet, ColliderBit, RECAST* (ATLAS-internal), ...

Simplified models for BSM Higgs searches

 \Rightarrow High sensitivity to different simplified model topologies, spins of mediators and invisible particles have relatively small impact

Simplified models for BSM Higgs searches

[H. Bahl, V. Martin Lozano, G. W. '21]

20

\Rightarrow (Acceptance x efficiency) maps, can easily be utilised to obtain exclusion limits for a wide range of models

Application: expected limits for simplified model topologies from search in $bbZ + E_T^{miss}$ final state

[D. P. Adan et al. '22]

⇒ Signal region with forward jets has sizeable impact

21

Properties of the observed Higgs boson at 125 GeV

Higgs mass as a precision observable: $M_{h125} = 125.25 \pm 0.17$ GeV Comparison: M_h prediction for heavy SUSY ($M_{SUSY} = 100$ TeV)

⇒ High-precision measurement of the Higgs mass puts important constraints on BSM physics even if new physics scale is very high!

CP properties of h125

It has been experimentally verified that h125 is not a pure CP-odd state, but it is by no means clear that it is a pure CP-even state

The main testing ground are processes involving only Higgs couplings to fermions

Test of CP violation in the tau Yukawa coupling

Constraints on the CP structure of the tau Yukawa coupling from $h125 \rightarrow \tau \tau$ decays using angular correlation between decay products:

Effect on global CP analysis of Higgs-fermion couplings [H. Bahl et al. '22]

Incorporation of recent CMS result on the CP structure of the tau Yukawa coupling from h125 $\rightarrow \tau \tau$ decays using angular correlation between the decay products

CP structure of the Higgs-fermion couplings

Comparison with the existing EDM constraints

ACME [Nature '18]: $d_e \leq 1.1 \times 10^{-29} e \text{ cm at } 90\% \text{ CL}$

Using [Panico, Pomarol, Riembau '18], [Brod, Haisch, Zupan '13], [Brod, Stamou '18],...

Analysis of the resulting amount of baryon asymmetry in the universe

Higgs pair production: theory predictions

27

[1] Glover, van der Bij 88; [2] Dawson, Dittmaier, Spira 98; [3] Shao, Li, Li, Wang 13; [4] Grigo, Hoff, Melnikov, Steinhauser 13; [5] de Florian, Mazzitelli 13; [6] Grigo, Melnikov, Steinhauser 14; [7] Grigo, Hoff 14; [8] Maltoni, Vryonidou, Zaro 14; [9] Grigo, Hoff, Steinhauser 15; [10] de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; [11] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16; [13] Ferrera, Pires 16; [14] Heinrich, SPJ, Kerner, Luisoni, Vryonidou 17; [15] SPJ, Kuttimalai 17; [16] Gröber, Maier, Rauh 17; [17] Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18; [18] Grazzini, Heinrich, SPJ, Kallweit, Kerner, Lindert, Mazzitelli 18; [19] de Florian, Mazzitelli 18; [20] Bonciani, Degrassi, Giardino, Gröber 18; [21] Davies, Mishima, Steinhauser 19; [26] Chen, Li, Shao, Wang 19, 19; [27] Davies, Herren, Mishima, Steinhauser 19, 21; [28] Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 21; [29] Bellafronte, Degrassi, Giardino, Gröber, Vitti 22;

Effects of BSM particles on the trilinear Higgs coupling

Trilinear Higgs coupling in extended Higgs sectors: potentially large loop contributions

• Leading one-loop corrections to λ_{hhh} in models with extended sectors (like 2HDM):

First found in 2HDM: [Kanemura, Kiyoura, Okada, Senaha, Yuan '02]

28

 \mathcal{M} : **BSM mass scale**, e.g. soft breaking scale M of Z_2 symmetry in 2HDM n_Φ : # of d.o.f of field Φ

 $\,\,$ Size of new effects depends on how the BSM scalars acquire their mass: $\,m_\Phi^2\sim {\cal M}^2+ ilde\lambda v^2$

\Rightarrow Large effects possible for sizeable splitting between m_{Φ} and \mathcal{M}

Simple example of extended Higgs sector: 2HDM

- > 2 SU(2)_L doublets $\Phi_{1,2}$ of hypercharge $\frac{1}{2}$
- > CP-conserving 2HDM, with softly-broken Z₂ symmetry ($\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow -\Phi_2$) to avoid tree-level FCNCs $V_{----}^{(0)} = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_2^2 (\Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_2)$

$$\frac{\gamma_{2\text{HDM}}^{(6)}}{\gamma_{2\text{HDM}}^{(6)}} = \frac{m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_2) }{+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{\lambda_5}{2} \left((\Phi_2^{\dagger} \Phi_1)^2 + \text{h.c.} \right)$$

> m_1, m_2 eliminated with tadpole equations, and $v_1^2 + v_2^2 = v^2 = (246 \text{ GeV})^2$

- > 7 free parameters in scalar sector: m_3 , λ_i (i=1,...,5), tan $\beta \equiv v_2/v_1$
- Mass eigenstates: h, H: CP-even Higgses, A: CP-odd Higgs, H[±]: charged Higgs, α² CP²⁴⁶eff^{eV)²} Higgs mixing angle
- > λ_i (i=1,...,5) traded for mass eigenvalues m_h^2 , m_H^2 , $m_{H^\pm}^2$, $m_{H^\pm}^2$ and angle α
- > m_3 replaced by a Z_2 soft-breaking mass scale

$$M^2 = \frac{2m_3^2}{s_{2\beta}}$$

29

▶ **BSM-scalar masses** take form $m_{\Phi}^2 = M^2 + \tilde{\lambda}_{\Phi}v^2$, $\Phi \in \{H, A, H^{\pm}\}$

In alignment limit, $\alpha = \beta - \pi/2$: h couplings are SM-like at tree level

Two-loop predictions for the trilinear Higgs coupling in the 2HDM vs. current experimental bounds

[H. Bahl, J. Braathen, G. W. '22] The largest loop corrections to λ_{hhh} in the 2HDM are induced by the quartic couplings between two SM-like Higgs bosons h (where one external Higgs is possibly replaced by its vacuum expectation value) and two BSM Higgs bosons ϕ of the form

$$g_{hh\Phi\Phi} = -\frac{2(M^2 - m_{\Phi}^2)}{v^2} \qquad \Phi \in \{H, A, H^{\pm}\}$$

Leading two-loop corrections involving heavy BSM Higgses and the top quark in the effective potential approximation

[J. Braathen, S. Kanemura '19, '20]

 \Rightarrow Incorporation of the highest powers in $g_{hh\phi\phi}$

Analysis is carried out in the alignment limit of the 2HDM ($\alpha = \beta - \pi/2$) \Rightarrow h has SM-like tree-level couplings

The assumption that new physics only affects the trilinear Higgs selfcoupling is expected to hold at most approximately in realistic models

BSM models can modify Higgs pair production via resonant and non-resonant contributions

The current experimental limit can only probe scenarios with large deviations from the SM

 \Rightarrow Direct application of the experimental limit on \varkappa_{λ} is possible if sub-leading effects are less relevant

Check of applicability of the experimental limit on \varkappa_λ

Alignment limit: h has SM-like tree-level couplings

Resonant contribution to Higgs pair production with H or A in the s channel is absent in the alignment limit

The dominant new-physics contributions enter via trilinear coupling

⇒The leading effects in $g_{hh\phi\phi}$ to the Higgs pair production process are correctly incorporated at the 1- and 2-loop order via the corrections to the trilinear Higgs coupling!

Two-loop prediction for the trilinear Higgs coupling Parameter scan with exp. and theoretical constraints

[H. Bahl, J. Braathen, G. W. '22]

- Our strategy:
 - 1. Scan BSM parameter space, keeping only points passing various theoretical and experimental constraints (see below)
 - 2. Identify regions with large BSM deviations in λ_{hhh}
 - 3. Devise a **benchmark scenario** allowing large deviations and investigate impact of experimental limit on λ_{hhh}
- Here: we consider an aligned 2HDM of type-I, but similar results expected for other 2HDM types, or other BSM models with extended Higgs sectors
- Constraints in our parameter scan:

- NLO perturbative unitarity, using results from [Grinstein et al. 1512.04567], [Cacchio et al. 1609.01290]
- For points passing these constraints, we compute κ_{λ} at 1L and 2L, using results from [JB, Kanemura '19]

Results for the Two-Higgs doublet model (2HDM) [H. Bahl, J. Braathen, G. W. '22]

Displayed points are in agreement with the exp. and theo. constr. Enhancement up to factor 10 w.r.t. SM possible 2-loop corrections can reach 70% of the 1-loop effects ⇒ Large effects possible, can be probed with the LHC limits!

Results for the Two-Higgs doublet model (2HDM)

Constraints in the mass plane of H and A

⇒ LHC limits exclude parameter regions that would be allowed by all other constraints; high sensitivity of future limits / measurements!

36
Connection between the trilinear Higgs coupling and the evolution of the early universe

2HDM, N2HDM, ... : the parameter region giving rise to a strong first-order EWPT, which may cause a detectable gravitational wave signal, is correlated with an enhancement of the trilinear Higgs selfcoupling and with "smoking gun" signatures at the LHC [T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. '22]

2HDM of type II: region of strong first-order EWPT

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. '22]

N2HDM (two doublets + real singlet) example

"Smoking gun" collider signatures: A → Z h₂, A → Z h₃ Nucleation temperature for the first-order EWPT, N2HDM scan:

> [T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. '21] T_n [GeV] 160180 100120140 2002200.35no T_c defined no T_n defined 0.30No first-order EWPT: $\rightarrow Zh_3) \; [pb]$ universe is trapped 0.25in a "false" vacuum 0.20 \downarrow 0.15*bb*) 0.10 0.050.200.350.000.050.100.150.250.30 $\sigma(qq \to A \to Zh_2)$ [pb]

> > 39

⇒ Lower nucleation temperatures, i.e. stronger first-order EWPTs, are correlated with larger signal rates at the LHC!

2HDM, projections for pp \rightarrow A \rightarrow ZH \rightarrow Ztt search

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. '22]

2HDM, 1-loop predictions for the trilinear Higgs coupling vs. current bound and future sensitivities

EWPT is correlated with significant deviation of x_{λ} from SM value Probing the nature of Higgs physics with the latest experimental results, Georg Weiglein, DESY Particle and Astroparticle Physics Colloquium, Hamburg, 10 / 2022

Prospects for measuring the trilinear Higgs coupling: HL-LHC vs. ILC

anyH3: automated one-loop predictions for λ_{hhh} [H. Bahl, J. Braathen, M. Gabelmann, G. W. '22]

PFFenormalisation: $\delta \lambda_{hhh}^{CT}$, different choices for SM-type and BSM parameters

Example: doublet and triplet extensions of the SM

Possible hints from searches for additional Higgses

Excess in the CMS search for A \rightarrow tt at about 400 GeV:

Global significance below 2σ

Consistent with a pseudoscalar Higgs boson at $\sim 400~{\rm GeV}$

Most significant for $\Gamma_A/m_A = 4\%$ and $c_{At\bar{t}} \sim 1$, but also consistent with slightly different m_A and Γ_A/m_A $\rightarrow \chi^2_{t\bar{t}}(m_A, \Gamma_A/m_A, c_{At\bar{t}})$

Corresponding ATLAS limits only for $m_A > 500 \text{ GeV}$ and only 8 TeV data [ATLAS: 1707.06025]

45

CMS: excess in search for A \rightarrow tt at about 400 GeV

Search for additional Higgs bosons: H, A \rightarrow tt

47

Search for additional Higgs bosons: H, A \rightarrow tt [T. Biekötter, A. Grohsjean, S. Heinemeyer, C. Schwanenberger, G. W. '21]

Excess in CMS search at about 400 GeV:

⁴⁸

Further hints for an additional light Higgs boson: excesses at about 95 GeV at LEP and CMS

Many model interpretations with common origin of both excesses, including N2HDM and NMSSM

Possible hint for an additional light Higgs boson: CMS excess in $h \longrightarrow \gamma \gamma$ search vs. ATLAS limit

[T. Stefaniak '18]

50

Could these excesses in the search for light additional Higgs bosons also be accommodated in the considered models?

⇒ The A → tt excess at 400 GeV and the CMS $\gamma\gamma$ and LEP excesses at about 95 GeV can be described very well simultaneously! 51

Latest news: CMS result for the $\tau\tau$ channel

 \Rightarrow The low-mass search shows an excess near 95 GeV that is compatible with the one observed in the $\gamma\gamma$ channel at Run I and II

52

Can the CMS $\gamma\gamma$, CMS $\tau\tau$ and the LEP excess near

95 GeV all be described simultaneously?

Next-to-Two-Higgs doublet model (N2HDM):

N2HDM = SM(ϕ_1) + Second Higgs Doublet(ϕ_2) + Real Scalar Singlet(ϕ_s) = 2HDM(ϕ_1, ϕ_2) + Real Scalar Singlet(ϕ_s)

Higgs sector

$$V = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + h.c.] + \frac{1}{2} m_5^2 \Phi_5^2 + \frac{\lambda_6}{8} \Phi_5^4 + \frac{\lambda_7}{2} (\Phi_1^{\dagger} \Phi_1) \Phi_5^2 + \frac{\lambda_8}{2} (\Phi_2^{\dagger} \Phi_2) \Phi_5^2$$

Symmetries: $Z_2: \phi_1 \to \phi_1, \phi_2 \to -\phi_2$ and $\phi_s \to \phi_s$, only softly broken by m_{12}^2 $Z'_2: \phi_1 \to \phi_1, \phi_2 \to \phi_2$ and $\phi_s \to -\phi_s$, spontaneously broken by v_s

Extension of Z_2 to Yukawa sector \Rightarrow 4 types of the (N)2HDM

	Туре	<i>u</i> -quarks	<i>d</i> -quarks	leptons
$-\mathcal{L}_{\text{Yuk}} = \sum_{i=1}^{2} \frac{\sqrt{2}m_{f}}{v} c_{h_{i}f\bar{f}} \overline{\Psi}_{f} \Psi_{f} h_{i}$		ϕ_2	ϕ_2	ϕ_2
	II (Susy-like)	ϕ_2	ϕ_1	ϕ_1
	III (lepton-specific)	ϕ_2	ϕ_2	ϕ_1
	IV (flipped)	ϕ_2	ϕ_1	ϕ_2

53

T. Biekötter, S. Heinemeyer,

N2HDM vs. excesses in Higgs searches near 95 GeV

N2HDM, type IV:

[T. Biekötter, S. Heinemeyer, G. W. '22]

54

\Rightarrow Good compatibility with all three excesses!

N2HDM vs. excesses in Higgs searches near 95 GeV

N2HDM, type IV:

[T. Biekötter, S. Heinemeyer, G. W. '22]

55

$$\chi^{2} = \chi^{2}_{\gamma\gamma} + \chi^{2}_{\tau\tau} + \chi^{2}_{bb} + \chi^{2}_{125}$$
$$\chi^{2}_{125}: \text{ HiggsSignals}$$
$$\Rightarrow \text{Good compatibility with all three excesses!}$$

2

9

Probing the nature of Higgs physics with the latest experimental results, Georg Weiglein, DESY Particle and Astroparticle Physics Colloquium, Hamburg, 10 / 2022

2

2

N2HDM: a 95 GeV Higgs and the CDF value of M_W

Conclusions

Observed Higgs boson at 125 GeV: LHC and EDM constraints are compatible with sizeable amount of CP violation in fermion couplings

The constraints on the trilinear Higgs coupling from the LHC have already sensitivity to the physics of extended Higgs sectors

Predictions for the trilinear Higgs coupling are closely related to the electroweak phase transition and the thermal evolution of the early universe, and have an impact on potentially detectable gravitational wave signals and "smoking gun" signatures at the LHC

Excesses in BSM Higgs searches at 95 GeV and 400 GeV are well described in models with extended Higgs sectors (N2HDM, ...)

⇒ Much progress expected during the next years from more data and improved theoretical predictions

Probing the nature of Higgs physics with the latest experimental results, Georg Weiglein, DESY Particle and Astroparticle Physics Colloquium, Hamburg, 10 / 2022

57

A bit of advertisement

Museum der Arbeit, 26.10.2022 bis 10.04.2023

Wissenschaft hautnah: Der Exzellenzcluster "Quantum Universe" der Universität Hamburg zeigt gemeinsam mit dem Forschungszentrum DESY und dem Museum der Arbeit die Sonderausstellung <u>Wie alles begann. Von Galaxien, Quarks und Kollisionen</u> über den Ursprung und die Entwicklung des Universums.

Experimental constraints on \varkappa_λ

[ATLAS Collaboration '22]

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1}\sigma_{-1}\sigma$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single- <i>H</i> combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_{\lambda} < 6.1$	$-2.1 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

Higgs self-coupling $\boldsymbol{\lambda}$

Self-coupling λ of h125: experimental access to the Higgs potential

Sensitivity of different processes crucially depends on the actual value of λ

Di-Higgs processes at hadron colliders:

- $\sigma(HH) \approx 0.01 \times \sigma(H)$
- Important to use differential measurements

Di-Higgs processes at lepton colliders

ZHH or VBF production complementary

Single-Higgs production sensitive through loop effects, e.g. for $\kappa_{\lambda} = 2$:

- Hadron colliders: ~3%
- Lepton colliders: ~1%

Probing the nature of Higgs physics with the latest experimental results, Georg Weiglein, DESY Particle and Astroparticle Physics Colloquium, Hamburg, 10 / 2022

[B. Heinemann '19]

61

Generic size $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2) \Rightarrow$ NLO EW ~ NNLO QCD

typical: few per cent for inclusive observables

systematic enhancements

• by (soft and/or collinear) photon emission:

kinematic effects, radiative tails mass-singular logarithms $\propto \alpha \ln(m_{\mu}/Q)$ for bare muons \Rightarrow huge effects (> 100%) possible (in radiative tails)

• at high energies:

EW Sudakov logarithms $\propto (lpha/s_{
m w}^2) \ln^2(M_{
m W}/Q)$ and subleading logs

[A. Denner '22]

62

- \Rightarrow EW corrections of several 10% in high-energy tails of distributions or cross sections dominated by high scales
- \Rightarrow NLO EW corrections can be sizeable
- \Rightarrow must be included in theoretical predictions

Combination of electroweak and QCD corrections in additive / factorised form

anyH3: one-loop predictions for the trilinear Higgs coupling in (essentially) any model

Because of the importance of the trilinear Higgs coupling for constraining BSM scenarios, which will further grow during the next years, a tool providing in a quick and convenient way a one-loop prediction for \varkappa_{λ} in a wide variety of models may be useful

This was the idea that led to the development of the Python code [H. Bahl, J. Braathen, M. Gabelmann, G. W. '22]

Disclaimer: the trilinear Higgs coupling is not a physical observable (see above); the provided result should be understood as a building block that contributes to the Higgs pair production process; the user needs to determine whether the experimental bounds on x_{λ} are applicable to the considered model

anyH3 workflow

[H. Bahl, J. Braathen, M. Gabelmann, G. W. '22]

SM result

Individual contributions / scheme comparison as function of renormalisation scale:

[H. Bahl, J. Braathen, M. Gabelmann, G. W. '22]

65

DESY.

N2HDM vs. 2HDM

Prediction for λ_{hhh} in the N2HDM as function of the mixing angle α_2 No further constraints applied; $\alpha_2 \rightarrow \pi/2$: 2HDM in the alignment limit

[H. Bahl, J. Braathen, M. Gabelmann, G. W. '22]

66

Example 1: 2HDM limit corresponds to SM limit

⇒ Significant deviations between SM / 2HDM and N2HDM possible

N2HDM vs. 2HDM

Prediction for λ_{hhh} in the N2HDM as function of the mixing angle α_2 No further constraints applied; $\alpha_2 \rightarrow \pi/2$: 2HDM in the alignment limit

[H. Bahl, J. Braathen, M. Gabelmann, G. W. '22]

Example 2: BSM Higgs bosons of the N2HDM are heavy

⇒ Significant deviations between 2HDM and N2HDM possible

N2HDM vs. 2HDM

Prediction for λ_{hhh} in the N2HDM as function of the mixing angle α_2 No further constraints applied; $\alpha_2 \rightarrow \pi/2$: 2HDM in the alignment limit

[H. Bahl, J. Braathen, M. Gabelmann, G. W. '22]

Example 3: N2HDM with a Higgs boson at 96 GeV

Higgs physics at the LHC (Run 3, HL-LHC)

Non-standard decays of heavy Higgses, e.g. $H \rightarrow \tilde{\chi} \tilde{\chi}$

[H. Bahl et al. '18] Decays of heavy Higgs bosons H, A into charginos and neutralinos:

⇒ Dedicated searches for heavy Higgs decays into SUSY particles could probe the ``LHC wedge'' region

Probing the nature of Higgs physics with the latest experimental results, Georg Weiglein, DESY Particle and Astroparticle Physics Colloquium, Hamburg, 10 / 2022

70

Theoretical description: N2HDM and NMSSM

[T. Biekötter, A. Grohsjean, S. Heinemeyer, C. Schwanenberger, G. W. '21]

Scans in the N2HDM (Higgs sector consists of two doublets and a real singlet) and the NMSSM (MSSM + Higgs singlet + superpartners), taking into account the constraints from collider searches, the signal rates of the Higgs at 125 GeV, flavour physics, electroweak precision observables, vacuum stability and perturbative unitarity

NMSSM with $M_A = 400$ GeV and low tan β : "alignment without decoupling" region

$$\chi^2 = \chi^2_{125} + \chi^2_{tt} + \dots$$

Require: $\chi^2 \leq \chi^2_{SM}$

Higgs factory: discovery potential for a low-mass Higgs; Sensitivity at 250 GeV with 500 fb⁻¹

\Rightarrow Higgs factory at 250 GeV will explore a large untested region!

Probing the nature of Higgs physics with the latest experimental results, Georg Weiglein, DESY Particle and Astroparticle Physics Colloquium, Hamburg, 10 / 2022

72
Large corrections to M_W in the 2HDM

[H. Bahl, J. Braathen, G. W. '22]

2HDM type-I ($\alpha = \beta - \pi/2$) 2HDM type-I ($\alpha = \beta - \pi/2$) 2.510.2320 rld avg. $\pm 1 \sigma$ All displayed points 0.2315[2.50 [2.50] $\sin^2 heta_{
m eff}^{
m lep}$ are in agreement world avg. $\pm 1 \sigma$ with other relevant 0.2310 2.49experimental and 0.2305.350 80.375 80.400 80.425 80.450 80.475 80.500 theoretical 80.350 80.375 80.400 80.425 80.450 80.475 80.500 M_W [GeV] M_W [GeV] DF constraints 2HDM type-I ($\alpha = \beta - \pi/2$) SLD value 2.51Red: points in the $\Gamma_{Z} \begin{bmatrix} \mathrm{GeV} \\ \mathrm{GeV} \end{bmatrix}$ world avg. $\pm 1\sigma$ 1-sigma range of the **CDF** measurement 2.490.23050.2310 0.2315 0.2320 $\sin^2 \theta_{\rm eff}^{\rm lep}$

 M_W values as large as the CDF one can be accommodated in the 2HDM without violating other constraints Better agreement with SLD value for sin² θ_{eff}

Probing the nature of Higgs physics with the latest

2HDM type-I ($\alpha = \beta - \pi/2$)

r

Results for the 2HDM (alignment limit)

 α

Leading BSM one-loop contribution:
$$\Delta M_W \simeq \frac{1}{2} M_W \frac{c_W^2}{c_W^2 - s_W^2} \Delta \rho$$

$$\Delta \rho_{\text{non-SM}}^{(1)} = \frac{\alpha}{16\pi^2 s_W^2 M_W^2} \left\{ \frac{m_A^2 m_H^2}{m_A^2 - m_H^2} \ln \frac{m_A^2}{m_H^2} \right.$$
$$\left. - \frac{m_A^2 m_{H^{\pm}}^2}{m_A^2 - m_{H^{\pm}}^2} \ln \frac{m_A^2}{m_{H^{\pm}}^2} - \frac{m_H^2 m_{H^{\pm}}^2}{m_H^2 - m_{H^{\pm}}^2} \ln \frac{m_H^2}{m_{H^{\pm}}^2} + m_{H^{\pm}}^2 \right\}$$

Large contribution possible for sizeable splitting between the BSM Higgs bosons

 \Rightarrow Prediction for the electroweak precision observables in the 2HDM (alignment limit) at 2-loop order [H. Bahl, J. Braathen, G. W. '22] THDM EWPOS [S. Hessenberger, W. Hollik '16]

Plots on next slides: All displayed points are in agreement with other relevant experimental and theoretical constraints Red: points in the 1-sigma range of the CDF measurement 74

Probing the nature of Higgs physics with the latest experimental results, Georg Weiglein, DESY Particle and Astroparticle Physics Colloquium, Hamburg, 10 / 2022

Large corrections to M_W in the 2HDM [H. Bahl, J. Braathen, G. W. '22]

Prediction for the electroweak precision observables at 2-loop order, 2HDM in the alignment limit; example type I

Probing the nature of Higgs physics with the latest experimental results, Georg Weiglein, DESY Particle and Astroparticle Physics Colloquium, Hamburg, 10 / 2022