

Naturalness & Self-Organised Localisation

G. F. Giudice

The LHC has revolutionised our views on the particle world.

LEP didn't discover any new particles, but LEP had a profound impact on the way we think about particle physics.

The LHC results have forced us to think differently about BSM physics.

Idiotic statements

- Since LHC hasn't discovered supersymmetric particles, naturalness is wrong.
- Since there are no quadratic divergences in dimensional regularisation, naturalness is wrong.
- Since it depends on probability measures in theory space, naturalness is wrong.
- Since it depends on arbitrary aesthetic criteria, naturalness is wrong.
- Naturalness is no longer a motivation for future colliders.

- Naturalness is a powerful tool in QFT to signal the sensitivity of some low-energy parameters on heavy modes that are integrated out.
- We must question the hypotheses on which the naturalness principle rests and see what are the consequences.

1) Scale separation

Are there any new mass scales above the weak scale? Quantum gravity? Neutrino masses, the strong CP problem, inflation, gauge coupling unification, flavour...?

2) EFT validity

Naturalness: parameters being sensitive to heavy modes integrated out from the low-energy theory. Could it be that the rules of EFT break down?

IR/UV correlation?

Breakdown of locality in QFT?

Some theories allowed by EFT symmetries live in the swampland

3) IR free parameters are calculable quantities in the UV completion

IR parameters are functions of some fields whose value vary during the cosmological history or throughout a complex vacuum structure

Relaxing some of the naturalness hypotheses is possible, but it often leads to consequences that are even more radical than those of conventional naturalness.

CERN-TH-2021-077

arXiv:2105.08617v1 [hep-ph] 18 May 2021 Self-Organised Localisation

Gian F. Giudice,^a Matthew McCullough,^{a,b*} Tevong You^{a,b,c}

^aCERN, Theoretical Physics Department, Geneva, Switzerland ^bDAMTP, University of Cambridge, Cambridge, UK ^cCavendish Laboratory, University of Cambridge, Cambridge, UK

Abstract

We describe a new phenomenon in quantum cosmology: self-organised localisation. When the fundamental parameters of a theory are functions of a scalar field subject to large fluctuations during inflation, quantum phase transitions can act as dynamical attractors. As a result, the theory parameters are probabilistically localised around the critical value and the Universe finds itself at the edge of a phase transition. We illustrate how self-organised localisation could account for the observed near-criticality of the Higgs self-coupling, the naturalness of the Higgs mass, or the smallness of the cosmological constant.

Critical phenomena

Phase transitions in the early universe (QCD, EW, inflation?, baryogenesis?)

Classical phase transitions: the phase changes as the temperature is varied.

Ferromagnet:

Quantum phase transitions: the phase changes as an external field is varied.

$$V(\phi) = V_{\phi} + (\phi - \phi_c) \mathcal{O} \qquad \left\{ \begin{array}{ll} \langle \mathcal{O} \rangle = 0 & \phi > \phi_c \\ \langle \mathcal{O} \rangle \neq 0 & \phi < \phi_c \end{array} \right. \Rightarrow \quad \begin{array}{ll} V'(\phi) = V'_{\phi} + \langle \mathcal{O} \rangle \\ \text{discontinuous at } \phi = \phi_c \end{array}$$

Ingredient 1:

Some parameters of the microscopic theory are promoted to functions of one or more scalar fields.

$$\mu \longrightarrow \mu(\phi)$$
Axion: $\mathcal{L}_{\text{dim}=4} = \frac{g_s^2}{32\pi^2} \ \bar{\theta} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} \qquad \bar{\theta} \longrightarrow a$

Cosmological constant: Abbott, Brown-Teitelboim, etc.

Higgs mass: relaxion, etc.

Ingredient 2: Selection mechanism in the multiverse.

Axion: symmetry

Cosmological constant: anthropics (Weinberg)

Higgs mass: back-reaction from EW breaking (relaxion)

Self-Organised Criticality (SOL): criticality

Stochastic approach (Vilenkin, Starobinsky, Linde, ...) $P(\phi,t)$ distribution of volume occupied by ϕ at time t

Fokker-Planck:
$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P_{\rm FP})}{\partial \phi} + \frac{V' P_{\rm FP}}{3H} \right] = \frac{\partial P_{\rm FP}}{\partial t} \left\langle \int \frac{\partial P_{\rm FP}}{\partial t} \right\rangle$$

Langevin:

$$\frac{d\phi}{dt} + \frac{V'(\phi)}{3H} = \eta(t) , \quad \langle \eta(t)\eta(t')\rangle = \frac{H^3}{4\pi^2} \,\delta(t-t')$$

Volume-weighted
Fokker-Planck (FPV):
$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P)}{\partial \phi} + \frac{V' P}{3H} \right] + 3HP = \frac{\partial P}{\partial t}$$

each trajectory is weighed by e^{3Ht}

GAUGE DEPENDENCE

- The localisation of *P* at the critical point is gauge-independent.
- The degree of localisation (which is measured by the width of the distribution *P*) is gauge-dependent.

MEASURE PROBLEM

Reheating surface: 3-volume hypersurface of all reheating events in spacetime.

Eternal inflation: the reheating surface is infinite and non-compact.

Steady-state solutions: $P(\phi, t) \xrightarrow{t \gg t_R} e^{K(t)} p(\phi)$

VALIDITY OF THE SEMICLASSICAL APPROXIMATION

$$N < S_{\rm ds} = \frac{8\pi^2 M_P^2}{\hbar H^2}$$

Arkani-Hamed *et al*, 0704.1814 Creminelli *et al*, 0802.1067 Dubovsky *et al*, 0812.2246; 1111.1725

Does the semiclassical approach break down after this time? Dvali *et al*, 1312.4795; 1701.08776

SWAMPLAND CONJECTURES

Do super-Planckian field excursions, slow-roll inflation and eternal inflation live in the swampland? In spite of all these open issues, I will use the probabilistic interpretation of *P* as an exploratory tool for SOL.

$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P)}{\partial \phi} + \frac{V' P}{3H} \right] + 3HP = \frac{\partial P}{\partial t} \quad (FPV)$$

$$EFT POTENTIALS$$

$$V = 3H_0^2 M_P^2 + g_\epsilon^2 f^4 \omega(\varphi) , \qquad \omega(\varphi) = \sum_{n=1}^{\infty} \frac{c_n}{n!} \varphi^n , \qquad \varphi \equiv \frac{\phi}{f}$$
"inflaton" "apeiron" $g_\epsilon : \text{ shift-symmetry breaking coupling}$
term term $f : \text{ field range}$

$$P(\varphi, T) = \sum_{\lambda} e^{\lambda T} p(\varphi, \lambda)$$

$$\alpha = \frac{3\hbar H_0^4}{4\pi^2 g_\epsilon^2 f^4} , \qquad \beta = \frac{3\xi f^2}{2M_P^2}$$

$$T = \frac{t}{t_R} , \qquad t_R = \frac{3H_0}{g_\epsilon^2 f^2}$$

LINEAR POTENTIAL

MULTIVERSE

T = constant

Steady-state solutions:

$$P(\phi, t) \stackrel{t \gg t_R}{\longrightarrow} e^{K(t)} p(\phi)$$

NEAR-CRITICALITY OF THE HIGGS SELF-COUPLING

$$V(\varphi, h) = \frac{M^4}{g_*^2} \omega(\varphi) + \frac{\lambda(\varphi, h)}{4} \left(h^2 - v^2\right)^2$$
$$\lambda(\varphi, M/g_*) = -g_*^2 \varphi , \quad \frac{d \lambda(\varphi, h)}{d \ln h^2} = \beta_\lambda(h)$$

SOL: at the end of inflation, there is a strong probabilistic preference for patches of the Universe where the Higgs self-coupling is near its critical value.

What happens to the SOL prediction during the thermal phase of the Universe?

$$Log_{10} T_{RH} [GeV]$$

$$\alpha^{2}\beta > \left(\frac{\hbar H_{0}^{4}}{M_{P}H_{\text{now}}\Lambda^{2}}\right)^{2} = \left(\frac{H_{0}}{2 \times 10^{-3} \text{ eV}}\right)^{8} \Rightarrow Q^{2}V \text{ \& eternal inflation}$$

Higgs naturalness: why is nature so close to the critical point?

HIGGS NATURALNESS

SOL prediction: $v = e^{-\frac{3}{4}} \Lambda_I$

 $v/M \sim \exp(-\lambda_{\rm uv}/2\beta_{\lambda})$

natural hierarchy from dimensional transmutation

weak doublet χ and a SM singlet ψ

(a)
$$\mathcal{L} = -y_{VL}\bar{\psi}\chi H_h + h.c.$$
 (b) $\mathcal{L} = -y_{VL}\bar{\psi}LH_h + h.c.$

Phenomenological SOL prediction: new matter that modifies β_{λ} such that the theory is near-critical with respect to variations of the Higgs bilinear.

COSMOLOGICAL CONSTANT

Parameters of a microscopic theory are functions of the apeiron.

SOL prediction: the distribution is peaked on phase *v* at the point where the two phases are degenerate.

In equilibrium, *T* in box A and B become equal.

MULTIVERSE

In steady-state, the expansion rates in phase *h* and *v* become equal \Rightarrow energy degeneracy.

A NEW WAY OF USING SUPERSYMMETRY

Supersymmetry is a hidden feature of the theory to any observer, like us, who lives in phase *v*, and yet it determines parameters measurable in our vacuum.

DARK-ENERGY EQUATION OF STATE

$$w = \frac{P_{\phi}}{\rho_{\phi}} = -1 + \left(\frac{V'_{v}(0)}{3H_{\text{now}}\Lambda_{\text{CC}}^{2}}\right)^{2} = -1 + \frac{c_{\xi}^{2}}{3}$$

TESTING SOL EXPERIMENTALLY?

SOL's smoking gun is phase coexistence.

Near-criticality of the Higgs self-coupling

Higgs naturalness

New matter at the TeV makes the SM unstable under variations of the Higgs bilinear.

Dark energy EoS

CONCLUSIONS

• SOL is an approach radically different from the symmetry paradigm: critical points can become dynamical attractors during inflation and determine low-energy parameters.

► Single atom: energy?

Gas in statistical equilibrium: probabilistic prediction.

Single Universe: SM parameters?

Multiverse in steady-state: probabilistic prediction.

• SOL can address some of the open questions in particle physics.

CONCLUSIONS

- Higgs naturalness remains a great mystery.
- We cannot say that we understand EW breaking until we get to the bottom of the naturalness problem.
- The lesson we have learned from the LHC is that we must expand our horizons.
- Hopefully SOL can help.