SMEFT Analysis of m_W

Status of the Standard Model CDF measurement of m_W Reminder of the SMEFT approach SMEFT analysis of m_W Favoured BSM scenarios How to detect them?

John Ellis

Summary of the Standard Model

• Particles and SU(3) × SU(2) × U(1) quantum numbers:

L_L E_R	$ \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \\ e_R^-, \mu_R^-, \tau_R^- \end{pmatrix} $	(1,2, -1) (1,1, -2)	
Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L} $ $ u_{R}, c_{R}, t_{R} $ $ d_{R}, s_{R}, b_{R} $	$(\mathbf{3,2,+1/3})$ $(\mathbf{3,1,+4/3})$ $(\mathbf{3,1,-2/3})$	

• Lagrangian: $\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^{a} F^{a \ \mu\nu}$ gauge interactions + $i\bar{\psi} / D\psi + h.c.$ matter fermions + $\psi_i y_{ij} \psi_j \phi + h.c.$ Yukawa interactions + $|D_{\mu} \phi|^2 - V(\phi)$ Higgs potential Tested < 0.1% before LHC Testing now in progress

Precision Tests of the Standard Model

Lepton couplings Pulls in global fit |O^{meas}–O^{fit}|/σ^{meas} Fit Measurement -0.032 $\Delta \alpha_{\rm had}^{(5)}({\rm m_{7}})$ 0.02758 ± 0.00035 0 02767 m₇ [GeV] 91.1875 ± 0.0021 91,1874 Γ_7 [GeV] 2.4952 ± 0.0023 2.4959 σ_{had}^0 [nb] 41.540 ± 0.037 41,478 20.742 20.767 ± 0.025 -0.035 $A_{fb}^{\dot{0},I}$ mA 0.01714 ± 0.00095 0.01643 $A_{I}(P_{\tau})$ 0.1465 ± 0.0032 0 1480 g<∣ R_b 0.21629 ± 0.00066 0.21579 R_c 0.1721 ± 0.0030 0.1723 $A_{fb}^{0,b}$ 0.1038 0.0992 ± 0.0016 -0.038 ≁ A^{b,c}_{fb} 0.0707 ± 0.0035 0.0742 Δα 0.935 0.923 ± 0.020 A_h 0.670 ± 0.027 0.668 A_c A_I(SLD) 0.1513 ± 0.0021 0.1480 $\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm fb})$ 0.2314 0.2324 ± 0.0012 68% CL 80.410 ± 0.032 80.377 m_w [GeV] -0.041 Γ_{W} [GeV] 2.092 -0.502 2.123 ± 0.067 -0.501 -0.503-0.5 m, [GeV] 172.7 ± 2.9 173.3 It works g_{AI} 2 3 0

LHC Measurements

It Walks and Quacks like a Higgs

Couplings scale ~ mass, with scale ~ v

High-precision measurement of the W boson mass with the CDF II detector

CDF Collaboration 12, T. Aaltonen^{1,2}, S. Amerio^{3,4}, D. Amidei⁵, A. Anastassov⁶, A. Annovi⁷, J. Antos^{8,9}, G. Apollinari⁶, J. A. Appel⁶, T. Arisawa¹⁰, A. Artikov¹¹, J. Asaadi¹², W. Ashmanskas⁶, B. Auerbach¹³, A. Aurisano¹², F. Azfar¹⁴, W. Badgett⁶, T. Bae^{15,16,17,18,19,20,21}, A. Barbaro-Galtieri²², V. E. Barnes²³, B. A. Barnett²⁴, P. Barria^{25,26}, P. Bartos^{8,9}, M. Bauce^{3,4}, F. Bedeschi²⁵, S. Behari⁶, G. Bellettini^{25,27}, J. Bellinger²⁸, D. Benjamin²⁹, A. Beretvas⁶, A. Bhatti³⁰, K. R. Bland³¹, B. Blumenfeld²⁴, A. Bocci²⁹, A. Bodek³², D. Bortoletto²³, J. Boudreau³³, A. Boveia³⁴, L. Brigliadori^{35,36}, C. Bromberg³⁷, E. Brucken¹², J. Budagov¹¹8, H. S. Budd³², K. Burkett⁶, G. Busetto^{3,4}, P. Bussev³⁸, P. Butti^{25,27}, A. Buzatu³⁸, A. Calamba³⁹, S. Camarda⁴⁰, M. Campanelli⁴¹, B. Carls⁴², D. Carlsmith²⁸, R. Carosi²⁵, S. Carrillo⁴³ & B. Casal⁴⁴, M. Casarsa⁴⁵, A. Castro^{35,36}, P. Catastini⁴⁶, D. Cauz^{45,47,48}, V. Cavaliere⁴², A. Cerri²², L. Cerrito⁴¹, Y. C. Chen⁴⁹, M. Chertok⁵⁰, G. Chiarelli²⁵, G. Chlachidze⁶, K. Cho^{15,16,17,18,19,20,21}, D. Chokheli¹¹, A. Clark⁵¹, C. Clarke⁵², M. E. Convery⁶, J. Conway⁵⁰, M. Corbo⁶, M. Cordelli⁷, C. A. Cox⁵⁰, D. J. Cox⁵⁰, M. Cremonesi²⁵, D. Cruz¹², J. Cuevas⁴⁴, R. Culbertson⁶, N. d'Ascenzo⁶, M. Datta⁶, P. de Barbaro³², L. Demortier³⁰, M. Deninno³⁵§, M. D'Errico^{3,4}, F. Devoto^{1,2}, A. Di Canto^{25,27}, B. Di Ruzza⁶, J. R. Dittmann³¹, S. Donati^{25,27}, M. D'Onofrio⁵³, M. Dorigo^{45,54}, A. Driutti^{45,47,48}, K. Ebina¹⁰, R. Edgar⁵, A. Elagin³⁴, R. Erbacher⁵⁰, S. Errede⁴², B. Esham⁴², S. Farrington¹⁴, J. P. Fernández Ramos⁵⁵, R. Field⁴³, G. Flanagan⁶, R. Forrest⁵⁰, M. Franklin⁴⁶, J. C. Freeman⁶, H. Frisch³⁴, Y. Funakoshi¹⁰, C. Galloni^{25,27}, A. F. Garfinkel²³, P. Garosi^{25,26}, H. Gerberich⁴², E. Gerchtein⁶, S. Giagu⁵⁶, V. Giakoumopoulou⁵⁷, K. Gibson³³, C. M. Ginsburg⁶, N. Giokaris⁵⁷§, P. Giromini⁷, V. Glagolev¹¹, D. Glenzinski⁶, M. Gold⁵⁸, D. Goldin¹², A. Golossanov⁶, G. Gomez⁴⁴, G. Gomez-Ceballos⁵⁹, M. Goncharov⁵⁹, O. González López⁵⁵, I. Gorelov⁵⁸, A. T. Goshaw²⁹, K. Goulianos³⁰, E. Gramellini³⁵, C. Grosso-Pilcher³⁴, J. Guimaraes da Costa⁴⁶, S. R. Hahn⁶, J. Y. Han³², F. Happacher⁷, K. Hara⁶⁰, M. Hare⁶¹, R. F. Harr⁵², T. Harrington-Taber⁶, K. Hatakeyama³¹, C. Hays¹⁴, J. Heinrich⁶², M. Herndon²⁸, A. Hocker⁶, Z. Hong¹², W. Hopkins⁶, S. Hou⁴⁹, R. E. Hughes⁶³, U. Husemann⁶⁴, M. Hussein³⁷, J. Huston³⁷, G. Introzzi^{25,65,66}, M. Iori^{56,67}, A. Ivanov⁵⁰, E. James⁶, D. Jang³⁹, B. Jayatilaka⁶, E. J. Jeon^{15,16,17,18,19,20,21}, S. Jindariani⁶, M. Jones²³, K. K. Joo^{15,16,17,18,19,20,21}, S. Y. Jun³⁹, T. R. Junk⁶, M. Kambeitz⁶⁸, T. Kamon^{15,16,17,18,19,20,21,12}, P. E. Karchin⁵², A. Kasmi³¹, Y. Kato⁶⁹, W. Ketchum³⁴, J. Keung⁶², B. Kilminster⁶, D. H. Kim^{15,16,17,18,19,20,21}, H. S. Kim⁶, J. E. Kim^{15,16,17,18,19,20,21}, M. J. Kim⁷, S. H. Kim⁶⁰, S. B. Kim^{15,16,17,18,19,20,21}, Y. J. Kim^{15,16,17,18,19,20,21}, Y. K. Kim³⁴, N. Kimura¹⁰, M. Kirby⁶, K. Kondo¹⁰S, D. J. Kong^{15,16,17,18,19,20,21}, J. Konigsberg⁴³, A. V. Kotwal²⁹*, M. Kreps⁶⁸, J. Kroll⁶², M. Kruse²⁹, T. Kuhr⁶⁸, M. Kurata⁶⁰, A. T. Laasanen²³, S. Lammel⁶, M. Lancaster⁴¹, K. Lannon⁶³, G. Latino^{25,26}, H. S. Lee^{15,16,17,18,19,20,21}, J. S. Lee^{15,16,17,18,19,20,21}, S. Leo⁴², S. Leone²⁵, J. D. Lewis⁶, A. Limosani²⁹, E. Lipeles⁶², A. Lister⁵¹, O. Liu²³, T. Liu⁶, S. Lockwitz⁶⁴, A. Loginov⁶⁴ §. D. Lucchesi^{3,4}. A. Lucà^{7,6}. J. Lueck⁶⁸. P. Lujan²². P. Lukens⁶. G. Lungu³⁰, J. Lys²²§, R. Lysak^{8,9}, R. Madrak⁶, P. Maestro^{25,26}, S. Malik³⁰, G. Manca⁵³, A. Manousakis-Katsikakis⁵⁷, L. Marchese³⁵, F. Margaroli⁵⁶, P. Marino^{25,70}, K. Matera⁴², M. E. Mattson⁵², A. Mazzacane⁶, P. Mazzanti³⁵, R. McNulty⁵³, A. Mehta⁵³, P. Mehtala^{1,2}, A. Menzione²⁵S, C. Mesropian³⁰, T. Miao⁶, E. Michielin^{3,4}. D. Mietlicki⁵, A. Mitra⁴⁹, H. Miyake⁶⁰, S. Moed⁶, N. Moggi³⁵, C. S. Moon^{15,16,17,18,19,20,21}, R. Moore⁶, M. J. Morello^{25,70}, A. Mukherjee⁶, Th. Muller⁶⁸, P. Murat⁶, M. Mussini^{35,36}, J. Nachtman⁶, Y. Nagai⁶⁰, J. Naganoma¹⁰, I. Nakano⁷¹, A. Napier⁶¹, J. Nett¹², T. Nigmanov³³, L. Nodulman¹³, S. Y. Noh^{15,16,17,18,19,20,21}, O. Norniella⁴², L. Oakes¹⁴, S. H. Oh²⁹, Y. D. Oh^{15,16,17,18,19,20,21}, T. Okusawa⁶⁹, R. Orava^{1,2}, L. Ortolan⁴⁰, C. Pagliarone⁴⁵, E. Palencia⁴⁴, P. Palni⁵⁸, V. Papadimitriou⁶, W. Parker²⁸, G. Pauletta^{45,47,48}, M. Paulini³⁹, C. Paus⁵⁹, T. J. Phillips²⁹, G. Piacentino⁶, E. Pianori⁶², J. Pilot⁵⁰, K. Pitts⁴², C. Plager⁷², L. Pondrom²⁸, S. Poprocki⁶, K. Potamianos²², A. Pranko²², F. Prokoshin¹¹, F. Ptohos⁷, G. Punzi^{25,27}, I. Redondo Fernández⁵⁵, P. Renton¹⁴, M. Rescigno⁵⁶, F. Rimondi³⁵§, L. Ristori^{25,6}, A. Robson³⁸, T. Rodriguez⁶², S. Rolli⁶¹, M. Ronzani^{25,27}, R. Roser⁶, J. L. Rosner³⁴, F. Ruffini^{25,26}, A. Ruiz⁴⁴, J. Russ³⁹, V. Rusu⁶, W. K. Sakumoto³², Y. Sakurai¹⁰, L. Santi^{45,47,48}, K. Sato⁶⁰, V. Saveliev⁶, A. Savoy-Navarro⁶, P. Schlabach⁶, E. E. Schmidt⁶, T. Schwarz⁵, L. Scodellaro⁴⁴, F. Scuri²⁵, S. Seidel⁵⁸, Y. Seiya⁶⁹, A. Semenov¹¹, F. Sforza^{25,27}, S. Z. Shalhout⁵⁰, T. Shears⁵³, P. F. Shepard³³, M. Shimojima⁶⁰, M. Shochet³⁴, I. Shreyber-Tecker⁷³, A. Simonenko¹¹, K. Sliwa⁶¹, J. R. Smith⁵⁰, F. D. Snider⁶, H. Song³³, V. Sorin⁴⁰, R. St. Denis³⁸§, M. Stancari⁶, D. Stentz⁶, J. Strologas⁵⁸, Y. Sudo⁶⁰, A. Sukhanov⁶, I. Suslov¹¹, K. Takemasa⁶⁰, Y. Takeuchi⁶⁰, J. Tang³⁴, M. Tecchio⁵, P. K. Teng⁴⁹, J. Thom⁶, E. Thomson⁶², V. Thukral¹², D. Toback¹², S. Tokar^{8,9}, K. Tollefson³⁷, T. Tomura⁶⁰, S. Torre⁷, D. Torretta⁶, P. Totaro³, M. Trovato^{25,70}, F. Ukegawa⁶⁰, S. Uozumi^{15,16,17,18,19,20,21}, F. Vázquez⁴³, G. Velev⁶, K. Vellidis⁵⁷, C. Vernieri^{25,70}, M. Vidal²³, R. Vilar⁴⁴, J. Vizán⁴⁴, M. Vogel⁵⁸, G. Volpi⁷, P. Wagner⁶², R. Wallny⁶, S. M. Wang⁴⁹, D. Waters⁴¹, W. C. Wester III⁶, D. Whiteson⁶², A. B. Wicklund¹³, S. Wilbur⁵⁰, H. H. Williams⁶², J. S. Wilson⁵, P. Wilson⁶, B. L. Winer⁶³, P. Wittich⁶, S. Wolbers⁶, H. Wolfmeister⁶³, T. Wright⁵, X. Wu⁵¹, Z. Wu³¹, K. Yamamoto⁶⁹, D. Yamato⁶⁹, T. Yang⁶, U. K. Yang^{15,16,17,18,19,20,21}, Y. C. Yang^{15,16,17,18,19,20,21}, W.-M. Yao²², G. P. Yeh⁶, K. Yi⁶, J. Yoh⁶, K. Yorita¹⁰, T. Yoshida⁶⁹, G. B. Yu^{15,16,17,18,19,20,21}, I. Yu^{15,16,17,18,19,20,21}, A. M. Zanetti⁴⁵, Y. Zeng²⁹, C. Zhou²⁹, S. Zucchelli^{35,36}

CDF Measurement of m_W

compared with previous measurements

Tension: 7- σ discrepancy with Standard Model?

CDF Measurement of the Mass of the W Boson

	80.50		Source	Uncertainty (MeV)
		- Experimental unc. 68% CL - LEP2/Tevatron Light supersymmetry	Lepton energy scale	3.0
		This measurement	Lepton energy resolution	1.2
	80.45		Recoil energy scale	1.2
5	00.10		Recoil energy resolution	1.8
[Ge		- () -	Lepton efficiency	0.4
≥ ≥			Lepton removal	1.2
_	80.40		Backgrounds	3.3
	00.40	- Viter -	$p_{\rm T}^{Z}$ model	1.8
		Heavy supersymmetry	$p_{\rm T}^W/p_{\rm T}^Z$ model	1.3
		- model	Parton distributions	3.9
	00.05	Standard	QED radiation	2.7
	80.35	Heinemeyer, Hollik, Weiglein, Zeune '20	W boson statistics	6.4
	1	71 172 173 174 175 176 177 178 m _t [GeV]	Total	9.4

Biggest uncertainties: lepton energy, p_T model, parton distributions, backgrounds

CDF Collaboration, Science 376 (2022) p170

CDF Measurement of the Mass of the W Boson

Table 1. Individual fit results and uncertainties for the M_W **measurements.** The fit ranges are 65 to 90 GeV for the m_T fit and 32 to 48 GeV for the p_T^{ℓ} and p_T^{ν} fits. The χ^2 of the fit is computed from the expected statistical uncertainties on the data points. The bottom row shows the combination of the six fit results by means of the best linear unbiased estimator (66).

Distribution	W boson mass (MeV)	χ ² /dof
$\overline{m_{\mathrm{T}}(\mathrm{e},\mathrm{v})}$	$80,429.1 \pm 10.3_{stat} \pm 8.5_{syst}$	39/48
$p_{T}^{\ell}(e)$	$80,411.4 \pm 10.7_{stat} \pm 11.8_{syst}$	83/62
$p_{\mathrm{T}}^{\mathrm{v}}(e)$	$80,\!426.3\pm14.5_{stat}\pm11.7_{syst}$	69/62
$m_{\mathrm{T}}(\mu, \mathbf{v})$	$80,446.1 \pm 9.2_{stat} \pm 7.3_{syst}$	50/48
$p_{T}^{\ell}(\mu)$	$80,428.2 \pm 9.6_{stat} \pm 10.3_{syst}$	82/62
$p_{\mathrm{T}}^{\mathrm{v}}(\mu)$	$80,\!428.9\pm13.1_{stat}\pm10.9_{syst}$	63/62
Combination	$80,433.5 \pm 6.4_{stat} \pm 6.9_{syst}$	7.4/5

Small differences for measurements with electrons and muons

CDF Collaboration, Science 376 (2022) p170

Dependence of W Mass on m_T Fit Window

CDF Collaboration, Science 376 (2022) p170

- Smaller mass in muon channel if lower range of m_T in fit
- Smaller mass possible if number of "one-legged"
 Z bosons underestimated

Tomaso Rodrigo

Accuracy of Muon Momentum Measurement?

- Momentum calibration using $Z, J/\Psi, \Upsilon$
- Larger uncertainty at smaller p_T^{μ} ?

Model for W Boson Production and Decay

Figure reproduced from CDF-II measurement (Science 376, 170).

- Can't measure invariant mass directly due to neutrino
- Look at sensitive observables

•
$$M_T = \sqrt{2 \left(p_T^{\ell} p_T^{\nu} - \vec{p}_T^{\ell} \cdot \vec{p}_T^{\nu} \right)}$$

• p_T^{ℓ}

•
$$p_T^
u$$
 with $(ec{p}_T^{\,
u}=-ec{p}_T^{\,\ell}-ec{u}_T)$

- Requires precise theory calculation
- Fit theory templates with varying M_W

Model for W Boson Production and Decay

- Perturbative series has terms proportional to $\alpha_s^n \log^{2n} \left(\frac{p_T^2}{M_W^2} \right)$
- As $p_T^W \to 0$ the series no longer converges
- Need to include corrections to all orders by resumming the series

Isaacson, LPC Physics Forum, Fermilab, 14 April

Status of Perturbative Calculations

		Anomalous D		
Order	Boundary Condition	γ_i (non-cusp)	Γ_{cusp},eta	Fixed Order Matching
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	-
NLL' (+ NLO)	$lpha_s$	1-loop	2-loop	$lpha_s$
NNLL (+ NLO)	$lpha_s$	2-loop	3-loop	$lpha_s$
NNLL' (+ NNLO)	$lpha_s^2$	2-loop	3-loop	$lpha_s^2$
\mathbb{N}^{3} LL (+ NNLO)	α_s^2	3-loop	4-loop	α_s^2
$N^3LL' (+ N^3LO)$	α_s^3	3-loop	4-loop	α_s^3
$ N^4 LL' (+ N^3 LO)$	$\alpha_s^{\bar{3}}$	4-loop	5-loop	α_s^3

- Accuracy used by CDF
- Current accuracy available in ResBos code
- ■ All terms known to this accuracy

Isaacson, LPC Physics Forum, Fermilab, 14 April

Sensitivity to Parton Distributions

Larger uncertainties when p_T^{ℓ} is used than with m_T $\mathcal{O}(10)$ MeV variations possible Larger at LHC than at Tevatron? Different for $m_{W^{\pm}}$? Sensitive to flavour-dependence in quark p_T

Sensitivity to Modelling

Disclaimers:

- Results are all preliminary
- Extraction of M_W uncertainty requires detailed fitting of templates
- Need to appropriately emulate data-driven approach from CDF

Prospects for LHC Measurement?

- Higher LHC energy implies more hadronic background per event
- Higher LHC luminosity generates more pile-up events
- Special low-pile-up run of HL-LHC?

Prospects for LHC Measurement?

- Higher LHC energy implies more hadronic background per event
- Higher LHC luminosity generates more pile-up events
- Special low-pile-up run of HL-LHC?
- Stop Press!

Manca & Rolandi, arXiv:2104.14015

- Study in CMS of potential sensitivity measuring the W double differential cross section in (p_T^{μ}, y)
- $\Delta m_W^{\pm} = 11.2, 16.1$ MeV,

combined $\Delta m_W = 9 \; {\rm MeV}$

• Not $\ni \Delta p_{\mu}$ scale, FSR

Theoretical Interpretations of W Mass

taking CDF measurement at face value

70 pairs and counting!

3667	DM	Zhu
3693	Inert H	Fan
3797	EWPO	Lu
3996	Relation to g-2	Athron
4183	Axion, chameleon	Yuan
4191	EWPO	Strumia
4202	SUSY	Yang
4204	EWPO	de Blas
4286	SUSY GMSB	Du
4356	SUSY NMSSM	Tang
4514	non-standard H	Cacciapaglia
4559	RH neutrinos	Blennow
4710	SUSY NMSSM	Cao
5031	Seesaw triplet	Cheng
5085	2HDM	Song
5260	SMEFT	Bagnaschi
5267	Custodial symm	Paul
5269	2HDM	Bahl
5283	S&T	Asadi
5284	Higgs physics	Di Luzio
5285	FlexibleSUSY	Athron
5296	S&T, SMEFT	Gu
5302	D3-Brane	Heckman
5303	2HDM	Babu
5728	2HDM	Heo
5760	Georgi-Machacek	Du
5942	Leptoquark	Cheung
5962	VL quarks	Crivellin
5965	Single-field	Endo
5975	2HDM + singlet	Biekötter
5992	SMEFT	Balkin
6327	Non-local SM	Krasnikov
6485	2HDM	Ahn
6505	2HDM	Han
6541	RPV MSSM	Zheng
7022	Lepton portal DM	kawamura
7144	Triplet H	Fileviez

7970	GUT, finite group	Wilson
8067	Extra U(1)	Zhang
8266	Seesaw	Borah
8390	Zee model	Chowdhury
8406	2HDM	Arcadi
8440	Beta decay	Cirigliano
8546	Oblique	Carpenter
8568	Seesaw	Popov
9001	2HDM	Ghorbani
9029	Stueckelberg	Du
9031	Leptoquarks	Bhaskar
9376	Triplet	Batra
9477	VLQ	Cao
9487	Extra U(1)	Zeng
9585	Extra U(1)	Baek
9671	DM fermions	Borah
10130	SMEFT	da Silva
10156	Dark photon	Cheng
10274	Triplet seesaw	Heeck
10375	FOPT triplet	Addazi
10338	2HDM	Lee
11570	Extra U(1)	Cai
11755	2HDM	Benbrik
11871	nu-lepton collider	Yang
11945	Scotogenic DM	Batra
11991	Atomic PV	Tran Tan
12018	2HDM	Abouabid
12453	Colour-octet	Gisbert
12898	Georgi-Machacek	Chen
13027	Extra U(1)	Zhou
13690	RG running	Gupta
2205.00758	Flipped SU(5)	Basiouris
783	DM	Wang

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A → massive vector bosons → gauge theory
- Yukawa's meson theory of the strong N-N force
 − Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

Standard Model Effective Field Theory a more powerful way to analyze the data

- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles due to exchanges of heavier particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM) - and identify it?

Summary of Analysis Framework

• Include all leading dimension-6 operators?

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

- Simplify by assuming flavour SU(3)⁵ or
 SU(2)² X SU(3)³ symmetry for fermions
- Work to linear order in operator coefficients, i.e. $\mathcal{O}(1/\Lambda^2)$
- Use G_F , M_Z , α as input parameters

Dimension-6 SMEFT Operators

- Including 2- and 4fermion operators
- Different colours for different data sectors
- Grey cells violate
 SU(3)⁵ symmetry
- Important when including top observables

	X^3		H^6 and H^4D^2		$\psi^2 H^3$
\mathcal{O}_{G}	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$\mathcal{O}_{\tilde{G}}$	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	${\cal O}_{uH}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
\mathcal{O}_{W}	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	${\cal O}_{{}_{HD}}$	$\left(H^{\dagger}D^{\mu}H ight)^{\star}\left(H^{\dagger}D_{\mu}H ight)$	${\cal O}_{dH}$	$(H^{\dagger}H)(\bar{q}_p d_r H)$
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$				
	X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$
\mathcal{O}_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$
$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	${\cal O}_{Hl}^{(3)}$	$(H^{\dagger}i D^{I}_{\underline{\mu}} H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
${\cal O}_{_{HW}}$	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{_{He}}$	$(H^{\dagger}i\overset{\frown}{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$
${\cal O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	${\cal O}_{uW}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$
$\mathcal{O}_{_{HB}}$	$H^{\dagger}H B_{\mu u}B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{H} B_{\mu u}$	${\cal O}_{Hq}^{(3)}$	$(H^{\dagger}iD_{\underline{\mu}}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
${\cal O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overset{\frown}{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$
\mathcal{O}_{HWB}	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	${\cal O}_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	\mathcal{O}_{Hd}	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$
Ouwp	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	\mathcal{O}_{dB}	$(\bar{q}_{n}\sigma^{\mu\nu}d_{r})HB_{\mu\mu}$	\mathcal{O}_{Hud}	$i(\hat{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$
- HWB	μν	- <i>uB</i>	$(1p^{-1})^{-1} = \mu\nu$		
	$(\bar{L}L)(\bar{L}L)$	- 45	$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
\mathcal{O}_{ll}	$ \begin{array}{c} \mu\nu \\ \hline (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \end{array} $	\mathcal{O}_{ee}	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$
$\begin{array}{ c } \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \end{array}$	$ \begin{array}{c} \mu\nu \\ \hline (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ \hline (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ \hline \end{array} $	\mathcal{O}_{ee} \mathcal{O}_{uu}	$(\overline{R}R)(\overline{R}R)$ $(\overline{e}_p\gamma_\mu e_r)(\overline{e}_s\gamma^\mu e_t)$ $(\overline{u}_p\gamma_\mu u_r)(\overline{u}_s\gamma^\mu u_t)$	\mathcal{O}_{le} \mathcal{O}_{lu}	$ \begin{array}{c c} (\bar{L}L)(\bar{R}R) \\ \hline (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \end{array} $
$\begin{array}{ c c } \hline \mathcal{O}_{ll} \\ \hline \mathcal{O}_{qq} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{qq}^{(3)} \\ \end{array}$	$ \begin{array}{c} \begin{array}{c} \mu\nu \\ \hline (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t}) \\ \hline (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ \hline (\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \end{array} $	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd}	$(\overline{RR})(\overline{RR})$ $(\overline{e}_{p}\gamma_{\mu}e_{r})(\overline{e}_{s}\gamma^{\mu}e_{t})$ $(\overline{u}_{p}\gamma_{\mu}u_{r})(\overline{u}_{s}\gamma^{\mu}u_{t})$ $(\overline{d}_{p}\gamma_{\mu}d_{r})(\overline{d}_{s}\gamma^{\mu}d_{t})$	\mathcal{O}_{le} \mathcal{O}_{lu} \mathcal{O}_{ld}	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) \end{array} $
$\begin{array}{ c c } \hline \mathcal{O}_{ll} \\ \hline \mathcal{O}_{qq} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(1)} \\ \end{array}$	$ \frac{\mu\nu}{(\bar{L}L)(\bar{L}L)} \\ \frac{(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)}{(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)} \\ \frac{(\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t)}{(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)} $	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu}	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \end{array} $	$egin{array}{c} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \end{array}$	$\begin{array}{c c} (\bar{L}L)(\bar{R}R) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \end{array}$
$\begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \end{bmatrix}$	$\begin{array}{c} \mu\nu \\ \hline (\bar{L}L)(\bar{L}L) \\ \hline (\bar{q}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}l_{t}) \\ \hline (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ (\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ (\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \end{array}$	O_{ee} O_{uu} O_{dd} O_{eu} O_{ed}	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \end{array} $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \end{matrix}$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t) \end{array} $
$\begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \end{bmatrix}$	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ud}	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \end{array} $	\mathcal{O}_{le} \mathcal{O}_{lu} \mathcal{O}_{ld} \mathcal{O}_{qe} $\mathcal{O}_{qu}^{(1)}$ $\mathcal{O}_{qu}^{(8)}$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \end{array} $
$\begin{array}{ c c }\hline \mathcal{O}_{ll}\\ \hline \mathcal{O}_{qq}\\ \mathcal{O}_{qq}^{(3)}\\ \mathcal{O}_{lq}^{(3)}\\ \mathcal{O}_{lq}^{(1)}\\ \mathcal{O}_{lq}^{(3)}\\ \end{array}$	$ \frac{\mu\nu}{(\bar{L}L)(\bar{L}L)} \\ \frac{(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})}{(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})} \\ \frac{(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})}{(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})} \\ \frac{(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})}{(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})} $	$\begin{array}{c c} & & \\ & &$	$\begin{array}{c c} (\bar{R}R)(\bar{R}R) \\ \hline (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	$\begin{array}{c c} & \mathcal{O}_{le} \\ & \mathcal{O}_{lu} \\ & \mathcal{O}_{ld} \\ & \mathcal{O}_{qe} \\ & \mathcal{O}_{qu}^{(1)} \\ & \mathcal{O}_{qu}^{(8)} \\ & \mathcal{O}_{qd}^{(1)} \end{array}$	$\begin{array}{c c} (\bar{L}L)(\bar{R}R) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \end{array}$
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \end{bmatrix} $	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	$\begin{array}{c} \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \\ \mathcal{O}_{ud}^{(8)} \end{array}$	$\begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \end{matrix}$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} $	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{R}L) \text{ and } (\bar{L}R)(\bar{L}R)$	$\begin{array}{c c} & & \\ & &$	$(\overline{R}R)(\overline{R}R)$ $(\overline{e}_{p}\gamma_{\mu}e_{r})(\overline{e}_{s}\gamma^{\mu}e_{t})$ $(\overline{u}_{p}\gamma_{\mu}u_{r})(\overline{u}_{s}\gamma^{\mu}u_{t})$ $(\overline{d}_{p}\gamma_{\mu}d_{r})(\overline{d}_{s}\gamma^{\mu}d_{t})$ $(\overline{e}_{p}\gamma_{\mu}e_{r})(\overline{u}_{s}\gamma^{\mu}d_{t})$ $(\overline{e}_{p}\gamma_{\mu}e_{r})(\overline{d}_{s}\gamma^{\mu}d_{t})$ $(\overline{u}_{p}\gamma_{\mu}u_{r})(\overline{d}_{s}\gamma^{\mu}d_{t})$ $(\overline{u}_{p}\gamma_{\mu}T^{A}u_{r})(\overline{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $B-\text{vio}$	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \partial_{qd}^{(8)} \\ \partial_{qd} \end{matrix}$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} $	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\rho_{\mu}\tau^{I}l_{r})(\bar{q}_{s}q^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\rho_{\mu}r^{I}l_{r})(\bar{q}_{s}q^{\mu}\tau^{I}q_{t})$	$\begin{array}{c} & \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \\ \end{array}$	$\frac{(\bar{R}R)(\bar{R}R)}{(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})}$ $\frac{(\bar{e}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})}{(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})}$ $\frac{(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}d_{t})}{(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})}$ $\frac{(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})}{(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})}$ $\frac{B-\text{vio}}{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(dg^{\alpha\beta\gamma})$	$\begin{bmatrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{bmatrix}$	$\begin{array}{c c} (\bar{L}L)(\bar{R}R) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq} \\ \mathcal{O}_{qq} \\ \mathcal{O}_{qq} \\ \mathcal{O}_{lq} \\ \mathcal{O}_{lq} \\ \mathcal{O}_{lq} \\ \mathcal{O}_{lq} \\ \mathcal{O}_{lq} \\ \end{bmatrix} $	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)} \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})} \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ (\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ (\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ (\bar{l}_{p}p_{\mu}\tau^{I}l_{r})(\bar{q}_{s}q^{\mu}\tau^{I}q_{t}) \\ (\bar{l}_{p}p_{\mu}r^{I}l_{r})(\bar{q}_{s}q^{\mu}d_{t}) \\ (\bar{l}_{p}p_{\mu}r^{I}d_{r})(\bar{l}_{s}q^{I}d_{t}) \\ (\bar{l}_{p}p_{\mu}q_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t}) \\ (\bar{l}_{p}p_{\mu}q_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t}) \\ (\bar{l}_{p}q_{\mu}q_{r})\varepsilon_{jk}(\bar{l}_{s}^{k}d_{t}) \\ (\bar{l}_{p}q_{\mu}q_{\mu}q_{\mu}q_{\mu}q_{\mu}q_{\mu}q_{\mu}q_{\mu$	$\begin{array}{c c} & & \\ & &$	$ \begin{array}{c c} (\overline{R}P)(\overline{R}R) \\ \hline (\overline{R}R)(\overline{R}R) \\ \hline (\overline{e}_{p}\gamma_{\mu}e_{r})(\overline{e}_{s}\gamma^{\mu}e_{t}) \\ (\overline{u}_{p}\gamma_{\mu}u_{r})(\overline{u}_{s}\gamma^{\mu}u_{t}) \\ (\overline{d}_{p}\gamma_{\mu}d_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ (\overline{e}_{p}\gamma_{\mu}e_{r})(\overline{u}_{s}\gamma^{\mu}d_{t}) \\ (\overline{e}_{p}\gamma_{\mu}u_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ (\overline{u}_{p}\gamma_{\mu}T^{A}u_{r})(\overline{d}_{s}\gamma^{\mu}T^{A}d_{t}) \\ \end{array} $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)$	$\begin{array}{c c} (\bar{L}L)(\bar{R}R) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} $	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}t^{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}p_{\mu}\tau^{I}l_{r})(\bar{q}_{s}q^{\mu}t^{I}q_{t})$ $(\bar{l}_{p}p_{\mu}\tau^{I}d_{r})(\bar{d}_{s}q^{I})$ $(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$ $(\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$	$\begin{array}{c c} & & \\ & &$	$\frac{(\bar{R}R)(\bar{R}R)}{(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})}$ $\frac{(\bar{e}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})}{(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})}$ $\frac{(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}d_{t})}{(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})}$ $\frac{(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})}{(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})}$ $B-\text{vio}$ $\frac{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right](d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}} \left[(d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right](d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km})$	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(gu)} \\ $	$\begin{array}{c c} (\bar{L}L)(\bar{R}R) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} $	$ \begin{array}{c} \underline{\mu\nu} \\ \hline (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t}) \\ \hline (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ (\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ \hline (\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ \hline (\bar{l}_{p}p_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ \hline (\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t}) \\ \hline (\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t}) \\ \hline (\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t}) \end{array} $	$\begin{array}{c c} & & \\ & &$	$ \begin{array}{c c} (\overline{R}P)(\overline{R}R) \\ \hline (\overline{R}R)(\overline{R}R) \\ \hline (\overline{e}_{p}\gamma_{\mu}e_{r})(\overline{e}_{s}\gamma^{\mu}e_{t}) \\ (\overline{u}_{p}\gamma_{\mu}u_{r})(\overline{u}_{s}\gamma^{\mu}u_{t}) \\ (\overline{d}_{p}\gamma_{\mu}d_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ (\overline{e}_{p}\gamma_{\mu}e_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ (\overline{e}_{p}\gamma_{\mu}e_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ (\overline{u}_{p}\gamma_{\mu}u_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ (\overline{u}_{p}\gamma_{\mu}T^{A}u_{r})(\overline{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(3)} \\ \mathcal{O}_{qd}^{(3)} \\ \mathcal{O}_{qd}^{(3)} \\ \mathcal{O}_{qd}^{(3)} \\ \mathcal{O}_{r}^{(3)} \\ $	$\begin{array}{c c} (\bar{L}L)(\bar{R}R) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}C^{\mu}d_{t}) \\ \hline \\ [(q_{s}^{\gamma j})^{T}Cl_{t}^{k}] \\] [(u_{s}^{\gamma})^{T}Ce_{t}] \\ k] [(q_{s}^{\gamma m})^{T}Cl_{t}^{n}] \\ (u_{s}^{\gamma})^{T}Ce_{t}] \end{array}$

Dimension-6 SMEFT Operators

- Including 2- and 4fermion operators
- Different colours for different data sectors
- Grey cells violate
 SU(3)⁵ symmetry
- Important when including top observables

	X^3		H^6 and H^4D^2			$\psi^2 H^3$			
\mathcal{O}_{G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	L	\mathcal{O}_{H}		$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$		
$\mathcal{O}_{\tilde{G}}$	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$		$\mathcal{O}_{H\square}$		$(H^{\dagger}H)_{\Box}(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}H)$		
${\mathcal O}_W$	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	μ	${\cal O}_{{}_{HD}}$	(H)	$^{\dagger}D^{\mu}H)^{}(H^{\dagger}D_{\mu}H)$	\mathcal{O}_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$		
$\mathcal{O}_{\widetilde{W}}$	$ \qquad \qquad$	μ							
	X^2H^2				$\psi^2 X H$		$\psi^2 H^2 D$		
\mathcal{O}_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$		${\cal O}_{eW}$	($ar{l} \ \sigma^{\mu u} e_r \ au^I H W^I_{\mu u}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\frown}{D}_{\mu} H)(\bar{l}_{p}\gamma^{\mu} l_{r})$		
$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$		${\cal O}_{eB}$		$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	${\cal O}_{_{Hl}}^{_{(3)}}$	$(H^{\dagger}iD_{\underline{\mu}}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
${\cal O}_{HW}$	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	A	nomal	ous	$_{p}\sigma^{\mu u}T^{A}u_{r}\widetilde{H}G^{A}_{\mu u}$	${\cal O}_{_{He}}$	$(H^{\dagger}i \overset{\frown}{D}_{\mu} H)(\bar{e}_p \gamma^{\mu} e_r)$		
${\mathcal O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$				$_{p}\sigma^{\mu u}u_{r}) au^{I}\widetilde{H}W^{I}_{\mu u}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i \overset{\frown}{D}_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$		
\mathcal{O}_{HB}	$H^{\dagger}H B_{\mu u}B^{\mu u}$	r	nagne	tic	$(\bar{q}_p \sigma^{\mu u} u_r) \hat{l}^{\dagger} B_{\mu u}$	${\cal O}_{{}_{Hq}}^{(3)}$	$(H^{\dagger}i D^{I}_{\underline{\mu}} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$\mathcal{O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	n	nomer	nts	$_{p}\sigma^{\mu u}T^{A}d_{r}HG^{A}_{\mu u}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} H)(\bar{u}_p \gamma^{\mu} u_r)$		
\mathcal{O}_{HWB}	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	J	\mathcal{O}_{dW}		$d_{\mu}\sigma^{\mu\nu}d_{r})\tau HW^{I}_{\mu\nu}$	${\cal O}_{Hd}$	$(H^{\dagger}i D_{\mu} H) (\bar{d}_p \gamma^{\mu} d_r)$		
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$		\mathcal{O}_{dB}		$(\bar{q}_p \sigma^{\mu u} d_{\mu}) H B_{\mu u}$	${\cal O}_{{\scriptscriptstyle H}{\scriptscriptstyle u}{\scriptscriptstyle d}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$		
						1	(==)(==)		
	$(ar{L}L)(ar{L}L)$			(I	(RR)		(LL)(RR)		
\mathcal{O}_{ll}	$\frac{(\bar{L}L)(\bar{L}L)}{(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)}$]	\mathcal{O}_{ee}	(1)	$(\bar{R}R)(RR)$ $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$	\mathcal{O}_{le}	$\frac{(LL)(RR)}{(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)}$		
$\mathcal{O}_{ll} \ \mathcal{O}_{qq}^{(1)}$	$\frac{(\bar{L}L)(\bar{L}L)}{(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)}$ $\frac{(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)}{(\bar{q}_s\gamma^\mu q_t)}$)	$egin{array}{c} \mathcal{O}_{ee} \ \mathcal{O}_{uu} \end{array}$		$ \begin{split} \bar{R}R)(RR) \\ \bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ \bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \end{split} $	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \end{array}$	$(LL)(RR)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{e}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu a_t)$		
$egin{array}{c} \mathcal{O}_{ll} \ \mathcal{O}_{qq}^{(1)} \ \mathcal{O}_{qq}^{(3)} \ \mathcal{O}_{qq}^{(3)} \end{array}$	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \end{array} $) (_t)	$egin{array}{c} \mathcal{O}_{ee} \ \mathcal{O}_{uu} \ \mathcal{O}_{dd} \end{array}$		$ar{R}(R) \ (ar{R}) \ (ar{e}_{p}\gamma_{\mu}e_{r})(ar{e}_{s}\gamma^{\mu}e_{t}) \ ar{u}_{p}\gamma_{\mu}u_{r})(ar{u}_{s}\gamma^{\mu}u_{t}) \ ar{d}_{p}\gamma_{\mu}d_{r})(ar{d}_{s}\gamma^{\mu}d_{t})$	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \end{array}$	$(LL)(RR) (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) (\bar{e}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu a_t) (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) $		
$\mathcal{O}_{ll} \ \mathcal{O}_{qq} \ \mathcal{O}_{qq}^{(3)} \ \mathcal{O}_{lq}^{(3)} \ \mathcal{O}_{lq}^{(1)} \ \mathcal{O}_{lq}^{(1)}$	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ \hline (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ (\bar{q}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \end{array} $) (_t)	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu}		$\begin{split} \bar{R}R)(RR) \\ \bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ \bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ \bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ e_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \end{split}$	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \ \mathcal{O}_{qe} \end{array}$	$\begin{array}{c} (LL)(RR) \\ \hline (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{e}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t) \end{array}$		
$\begin{matrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \end{matrix}$	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ \hline (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ (\bar{\ell}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \end{array} $) (t)	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed}		$ \begin{split} \bar{R}R)(\bar{R}R) \\ \bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ \bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ \bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ e_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \\ \bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t) \end{split} $	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \ \mathcal{O}_{qe} \ \mathcal{O}_{qu}^{(1)} \end{array}$	$(LL)(RR)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{e}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu a_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{q}_p \gamma_\mu q_r)(u_s \gamma^\mu u_t)$		
$\begin{matrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \end{matrix}$	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ (\bar{k}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \end{array} $) (t)	$egin{aligned} & \mathcal{O}_{ee} & \ & \mathcal{O}_{uu} & \ & \mathcal{O}_{dd} & \ & \mathcal{O}_{eu} & \ & \mathcal{O}_{ed} & \ & \mathcal{O}_{ed} & \ & \mathcal{O}_{ed} & \ & \mathcal{O}_{ud} & \ & \mathcal{O}_{ed} & \ & \mathcal{O}_{ud} &$		$ \begin{split} &\bar{R}R)(\bar{R}R) \\ &\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ &\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ &\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ &e_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \\ &\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t) \\ &\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t) \end{split} $	$egin{aligned} & \mathcal{O}_{le} & \ & \mathcal{O}_{lu} & \ & \mathcal{O}_{ld} & \ & \mathcal{O}_{qe} & \ & \mathcal{O}_{qu}^{(1)} & \ & \mathcal{O}_{qu}^{(8)} & \ & \mathcal{O}_$	$(LL)(RR)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{e}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{q}_p \gamma_\mu q_r)(u_s \gamma^\mu u_t)$ $(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$		
$\begin{array}{c} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \end{array}$	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ (\bar{c}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{b}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \end{array} $	(t) (t)	$egin{aligned} & \mathcal{O}_{ee} & \ & \mathcal{O}_{uu} & \ & \mathcal{O}_{dd} & \ & \mathcal{O}_{eu} & \ & \mathcal{O}_{ed} & \ & \mathcal{O}_{ed} & \ & \mathcal{O}_{ud} &$	(I) $((i)$ (i)	$\begin{split} \bar{R}R)(\bar{R}R) \\ \bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ \bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ \bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ \bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \\ \bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t) \\ \bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu d_t) \\ \mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t) \end{split}$	$egin{aligned} & \mathcal{O}_{le} & \ & \mathcal{O}_{lu} & \ & \mathcal{O}_{ld} & \ & \mathcal{O}_{qe} & \ & \mathcal{O}_{qu}^{(1)} & \ & \mathcal{O}_{qu}^{(8)} & \ & \mathcal{O}_{qd}^{(1)} & \ & \mathcal{O}_{qd}^{(1)} & \ & \mathcal{O}_{qd}^{(2)} & \ & \mathcal{O}_$	$(LL)(RR)$ $(\bar{l}_p\gamma_{\mu}l_r)(\bar{e}_s\gamma^{\mu}e_t)$ $(\bar{c}_p\gamma_{\mu}l_r)(\bar{u}_s\gamma^{\mu}a_t)$ $(\bar{l}_p\gamma_{\mu}l_r)(\bar{d}_s\gamma^{\mu}d_t)$ $(\bar{q}_p\gamma_{\mu}q_r)(\bar{e}_s\gamma^{\mu}e_t)$ $(\bar{q}_p\gamma_{\mu}q_r)(u_s\gamma^{\mu}u_t)$ $(\bar{q}_p\gamma_{\mu}q_r)(\bar{u}_s\gamma^{\mu}T^Au_t)$ $(\bar{q}_p\gamma_{\mu}q_r)(\bar{d}_s\gamma^{\mu}d_t)$		
$\begin{array}{c} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{b}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ wour anomalies) (t) (t)	$egin{aligned} & \mathcal{O}_{ee} \ & \mathcal{O}_{uu} \ & \mathcal{O}_{dd} \ & \mathcal{O}_{eu} \ & \mathcal{O}_{ed} \ & \mathcal{O}_{ed} \ & \mathcal{O}_{ud} \ & \mathcal{O}_{ud} \ & \mathcal{O}_{ud} \ & \mathcal{O}_{ud} \ & \mathcal{O}_{ud}^{(1)} \ & \mathcal{O}_{ud}^{(8)} \ & \mathcal{O}_{u$	(1) (1)	$\begin{split} & \overline{R}R)(\overline{R}R) \\ & \overline{e}_{p}\gamma_{\mu}e_{r})(\overline{e}_{s}\gamma^{\mu}e_{t}) \\ & \overline{u}_{p}\gamma_{\mu}u_{r})(\overline{u}_{s}\gamma^{\mu}u_{t}) \\ & \overline{d}_{p}\gamma_{\mu}d_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ & c_{p}\gamma_{\mu}e_{r})(\overline{u}_{s}\gamma^{\mu}u_{t}) \\ & \overline{e}_{p}\gamma_{\mu}e_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ & \overline{u}_{p}\gamma_{\mu}u_{r})(\overline{a}_{s}\gamma^{\mu}d_{t}) \\ & \mu_{\mu}T^{A}u_{r})(\overline{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{split}$	$\begin{array}{c} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \end{array}$	$\begin{array}{c} (LL)(RR) \\ \hline (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{e}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu a_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{a}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t) \end{array}$		
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} $	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(l_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ EVOUR ADOMALIES $(\bar{R}L) \text{ and } (\bar{L}R)(\bar{L}R)$	(t) (t)	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} $\mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{ud}^{(8)}$	(1) (i)	$\begin{split} \bar{R}R)(\bar{R}R) \\ \bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ \bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ \bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ \bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \\ \bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t) \\ \bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu d_t) \\ \mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t) \end{split}$	$\begin{array}{c} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \end{array}$	$(LL)(RR) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{v}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(u_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \\ Baryon \\ \end{array}$		
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} $	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{k}_{p}\gamma_{\mu}t_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{k}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ (\bar{k}_{D}) $(\bar{k}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $(\bar{l}_{p}^{p}e_{r})(\bar{d}_{s}q_{t}^{j}))$) (t)	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ud} $\mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{ud}^{(8)}$ \mathcal{O}_{ud}	(1) (i)	$ \frac{\bar{R}R)(RR)}{\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})} \\ \bar{a}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})} \\ \bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ e_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})} \\ \bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \bar{u}_{p}\gamma_{\mu}u_{r})(\bar{a}_{s}\gamma^{\mu}d_{t}) \\ \gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) $	$\begin{bmatrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{bmatrix}$	$(LL)(RR)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{e}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}a_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{a}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ Baryon		
$ \begin{array}{c} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array} \\ \hline \mathbf{Fla} \\ \hline \\ \hline \\ \mathcal{O}_{ledq} \\ \mathcal{O}_{quqd}^{(1)} \\ \end{array} $	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{k}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $((\bar{l}_{p}^{j}e_{r})(\bar{d}_{s}q_{t}^{j}))$ $(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(q_{s}^{*}d_{t})$) t)	$\begin{array}{c} \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \\ \mathcal{O}_{ud}^{(8)} \end{array}$	(1) (i)	$ \begin{split} \bar{R}R)(\bar{R}R) \\ \bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ \bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ \bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ \bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \\ \bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t) \\ \bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t) \\ \mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t) \end{split} $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(gu)} \\ \mathcal{O}_{qd}^{(gu)} \\ \mathcal{O}_{qd}^{(gu)} \\ \mathcal{O}_{qd}^{(gu)} \\ \begin{matrix} \mathcal{O}_{qd}^{(gu)} \\ \mathcal{O}_{qd}^{(gu)} \\ \mathcal{O}_{qd}^{(gu)} \\ \mathcal{O}_{qd}^{(gu)} \\ \mathcal{O}_{qd}^{(gu)} \\ \begin{matrix} \mathcal{O}_{qd} \\ \mathcal{O}_{qd} \\ \mathcal{O}_{qd}^{(gu)} \\ \begin{matrix} \mathcal{O}_{qd} \\ \mathcal{O}_{qd} \\ \mathcal{O}_{qd} \\ \begin{matrix} \mathcal{O}_{qd} \\ \begin{matrix} \mathcal{O}_{qd} \\ \mathcal{O}_{qd} \\ \begin{matrix} \mathcal{O}_{qd} \\ \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} $	$\begin{array}{c} (LL)(RR) \\ \hline (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{c}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(u_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \\ \hline \\ $		
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} $	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{b}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{b}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{b}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{b}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{b}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{c}_{p}^{I}p_{\mu}r)\varepsilon_{jk}(q_{s}^{\kappa}d_{t})$ $(\bar{q}_{r}^{J}T^{A}\mu)\varepsilon_{\tau}(\bar{q}^{k}T^{A}q_{t})$	l_t	$\begin{array}{c} \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \\ \mathcal{O}_{ud}^{(8)} \end{array}$	(1)	$ \frac{\bar{R}R)(RR)}{\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})} \\ \bar{a}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})} \\ \bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ e_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})} \\ \bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ \gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(2)} \\ \mathcal{O}_{qd}^{(2)$	$(LL)(RR)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{e}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}a_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{a}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$		
$ \begin{bmatrix} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ qq \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{bmatrix} \\ \hline \mathbf{Fla} \\ \hline \begin{bmatrix} (\bar{L}R \\ \mathcal{O}_{ledq} \\ \mathcal{O}_{quqd}^{(1)} \\ \mathcal{O}_{quqd}^{(8)} \\ \mathcal{O}_{leqq}^{(1)} \\ \mathcal{O}_{leqq}^{(1)} \end{bmatrix} \\ \hline \end{array} $	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}q^{\mu}\tau^{I}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu})(\bar{q}_{s}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu})(\bar{q}_{s}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu})(\bar{q}_{s}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu}\gamma_{\mu$	$\left t \right $	$\begin{array}{c} \mathcal{O}_{ee} \\ \mathcal{O}_{uu} \\ \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud} \\ \mathcal{O}_{ud} \\ \mathcal{O}_{ud} \\ \mathcal{O}_{qqu} \\ \mathcal{O}_{qqu} \\ \mathcal{O}_{qqq} \\ \mathcal{O}_{duu} \end{array}$	(1) (i)	$ \begin{split} \overline{R}R)(\overline{R}R) \\ \overline{e}_{p}\gamma_{\mu}e_{r})(\overline{e}_{s}\gamma^{\mu}e_{t}) \\ \overline{u}_{p}\gamma_{\mu}u_{r})(\overline{u}_{s}\gamma^{\mu}u_{t}) \\ \overline{d}_{p}\gamma_{\mu}d_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ c_{p}\gamma_{\mu}e_{r})(\overline{u}_{s}\gamma^{\mu}u_{t}) \\ \overline{e}_{p}\gamma_{\mu}e_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ \overline{u}_{p}\gamma_{\mu}u_{r})(\overline{d}_{s}\gamma^{\mu}d_{t}) \\ \mu T^{A}u_{r})(\overline{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{split} $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(gu)} \\ $	$(LL)(RR) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{e}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \\ (\bar{q}_{s}\gamma^{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \\ \hline \\ [(q_{s}^{\gamma})^{T}Cl_{t}^{n}] \\ [(u_{s}^{\gamma})^{T}Ce_{t}] \\ decay \\ k] [(q_{s}^{\gamma m})^{T}Cl_{t}^{n}] \\ (u_{s}^{\gamma})^{T}Ce_{s}] \\ \end{bmatrix}$		

Operators included in Global Fit

20 operators in flavour-universal SU(3)⁵ fit

which operators

EWPO:
$$\mathcal{O}_{HWB}$$
, \mathcal{O}_{HD} , \mathcal{O}_{ll} , $\mathcal{O}_{Hl}^{(3)}$, $\mathcal{O}_{Hl}^{(1)}$, \mathcal{O}_{He} , $\mathcal{O}_{Hq}^{(3)}$, $\mathcal{O}_{Hq}^{(1)}$, \mathcal{O}_{Hd} , \mathcal{O}_{Hu} ,
Bosonic: $\mathcal{O}_{H\Box}$, \mathcal{O}_{HG} , \mathcal{O}_{HW} , \mathcal{O}_{HB} , \mathcal{O}_{W} , \mathcal{O}_{G} ,
Yukawa: $\mathcal{O}_{\tau H}$, $\mathcal{O}_{\mu H}$, \mathcal{O}_{bH} , \mathcal{O}_{tH} ,
Top 2F: $\mathcal{O}_{HQ}^{(3)}$, $\mathcal{O}_{HQ}^{(1)}$, \mathcal{O}_{Ht} , \mathcal{O}_{tG} , \mathcal{O}_{tW} , \mathcal{O}_{tB} ,
Top 4F: $\mathcal{O}_{Qq}^{3,1}$, $\mathcal{O}_{Qq}^{3,8}$, $\mathcal{O}_{Qq}^{1,8}$, \mathcal{O}_{Qu}^{8} , \mathcal{O}_{Qd}^{8} , \mathcal{O}_{tQ}^{8} , \mathcal{O}_{tu}^{8} , \mathcal{O}_{td}^{8} . (2.12)

Operators included in Global Fit

20 operators in flavour-universal SU(3)⁵ fit

EWPO:
$$\mathcal{O}_{HWB}$$
, \mathcal{O}_{HD} , \mathcal{O}_{ll} , $\mathcal{O}_{Hl}^{(3)}$, $\mathcal{O}_{Hl}^{(1)}$, \mathcal{O}_{He} , $\mathcal{O}_{Hq}^{(3)}$, $\mathcal{O}_{Hq}^{(1)}$, \mathcal{O}_{Hd} , \mathcal{O}_{Hu} ,
Bosonic: $\mathcal{O}_{H\Box}$, \mathcal{O}_{HG} , \mathcal{O}_{HW} , \mathcal{O}_{HB} , \mathcal{O}_{W} , \mathcal{O}_{G} ,
Yukawa: $\mathcal{O}_{\tau H}$, $\mathcal{O}_{\mu H}$, \mathcal{O}_{bH} , \mathcal{O}_{tH} ,
Top 2F: $\mathcal{O}_{HQ}^{(3)}$, $\mathcal{O}_{HQ}^{(1)}$, \mathcal{O}_{Ht} , \mathcal{O}_{tG} , \mathcal{O}_{tW} , \mathcal{O}_{tB} ,
Top 4F: $\mathcal{O}_{Qq}^{3,1}$, $\mathcal{O}_{Qq}^{3,8}$, $\mathcal{O}_{Qq}^{1,8}$, \mathcal{O}_{Qu}^{8} , \mathcal{O}_{Qd}^{8} , \mathcal{O}_{tQ}^{8} , \mathcal{O}_{tu}^{8} , \mathcal{O}_{td}^{8} . (2.12)

Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1, 2
- Search for BSM
- Constraints on BSM

- At tree level
- At loop level

Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1, 2
- Search for BSM
- Constraints on BSM
 - At tree level
 - At loop level

Data included in Global Fit

EW precision observables			D_f			
Precision electroweak measurem	LHC Run 2 Higgs	Tevat	ron & Run 1 top	nobs	Ref.	
$\Gamma_{\alpha} \sigma^{0} = B^{0} A^{\ell}_{\alpha \beta} A_{\beta}(SLD) A$	ATLAS combination (Tevatr	on combination of differential $t\bar{t}$ forward-backward asymmetry,	4	[7]	
$\Gamma_Z, \sigma_{had.}, R_\ell, A_{FB}, A_\ell(SLD), A$	including ratios of bra	$A_{FB}(n$	n).	<u> </u>		
LUC and 1 W have made by W	Signal strengths coars	ATLA	Run 2 top		n_{obs}	Ref.
LHC run I W boson mass measu	CMS LHC combinatio		CMS $t\bar{t}$ differential distributions in the dilepton channel.		6	36 ,
Diboson LEP & LHC	Production: aaF , VB	$\underline{d\sigma}$	$\frac{d\sigma}{dm_{\star\tau}}$			231]
	Decay: $\gamma \gamma ZZ W^+W$	$\overline{dm_{t\bar{t}}}$	CMS $t\bar{t}$ differential distributions in the ℓ +jets channel.		10	[37]
W + W = angular distribution me	CMS stage 1.0 STXS	$\frac{d\sigma}{dm}$	$\frac{d\sigma}{dm_{+r}}$			
W^+W^- total cross section meas	12 parameter 6t 7 p	CMS 1	ATLAS measurement of differential $t\bar{t}$ charge asymmetry, $A_C($	$m_{t\bar{t}}$).	5	[38]
final states for 8 energies	15 parameter nt 7 pa	dilepte	ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$		2	[39]
$W^+ W^-$ total cross section meas	CMS stage 1.0 STAS	ATLA	CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$		11	[40]
qqqq final states for 7 energies	CMS stage 1.1 STXS	dilepte	CMS $t\bar{t}Z$ differential distributions.		4 4	[41]
W^+W^- total cross section meas	CMS differential cross	ATLA A=(m	$\frac{d\sigma}{dpT}$ $\frac{d\sigma}{d\cos\theta^*}$			
& qqqq final states for 8 energies	tion in the $WW^* \to \ell$	CMS 1	CMS measurement of differential cross sections and charge rat	tios for t-	5 5	[42]
ATLAS W^+W^- differential cro	$\frac{d\sigma}{dn_{int}}$ $\frac{d\sigma}{dn_{int}}$	$\frac{d\sigma}{dm}$	channel single-top quark production.			` <i>`</i>
$p_T > 120 \text{ GeV}$ overflow bin	ATLAS $H \to Z\gamma$ sign	ATLA	$\frac{d\sigma}{dp^T_{t+\bar{t}}} \mid R_t(p^T_{t+\bar{t}})$			
ATLAS W^+W^- fiducial differen	ATLAS $H \rightarrow \mu^+ \mu^-$ si	decay.	CMS measurement of t-channel single-top and anti-top cross s	ections.	4	[43]
<u>d</u>		ATLA	$\sigma_t, \sigma_{\bar{t}}, \sigma_{t+\bar{t}} \& R_t.$			
$dp_{\ell_1}^T$		f_0, f_L	CMS measurement of the t-channel single-top and anti-top cross	sections.	11111	[44]
ATLAS $W^{\pm} Z$ fiducial differentia	l cross section in the ℓ^+	for fr	$\sigma_t \sigma_t \sigma_{t+\bar{t}} R_t.$			
$\frac{d\sigma}{dp_{\sigma}^{T}}$		ATLA	CMS <i>t</i> -channel single-top differential distributions.		4 4	[45]
CMS $W^{\pm}Z$ normalised fiducial d	lifferential cross section	CMS t	$\frac{d\sigma}{d\sigma^T} = \frac{d\sigma}{d u_{r,r} }$			
channel, $\frac{1}{d\sigma}$		ATLA	ATLAS tW cross section measurement.			
σdp_z^{\prime}	reconception in the l^+l^-	$\frac{d\sigma}{dp_t^T}$	CMS tZ cross section measurement. 2/1 pc		omo	ntc
AT LAS ZJJ IIducial differential c	Toss section in the $\iota \cdot \iota$	CMS :	CMS tW cross section measurement.	leasui	eme	
LHC Run 1 Higgs		$CMS_{d\sigma}$	ATLAS tZ cross section measurement.			
	1.1	$dp_{t+\bar{t}}^T$	CMS $tZ(Z \to \ell^+ \ell^-)$ cross section measurement	clude	d in	
ATLAS and CMS LHC Run 1 co	mbination of Higgs sign	CMS1	$\sigma_{i} = B_{i}$	ciuuc		
Production: ggF , VBF , ZH , W	H & ttH	ATLA	$S_{s-channel single-top cross section measurement.}$			
Decay: $\gamma\gamma$, ZZ, W ⁺ W ⁻ , $\tau^+\tau^-$ &	& bb	CMS t	W cross section measurement.	oal an	alvsis	S
ATLAS inclusive $Z\gamma$ signal stren	gth measurement	ATLA	S tW cross section measurement in the single lepto			
		ATLA	S tW cross section measurement in the dilepton channel.	1	[35]	

Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

- Individual operator coefficients
- Marginalised over all other operator coefficients

Dimension-6 Constraints with Top-Specific SU(2)² x SU(3)³

- Individual operator coefficients
- Marginalised over all other operator coefficients

Correlation Analysis

- EWPO and boson sectors correlated
- Also within top sector
- Weaker correlations between sectors

Single-Field Extensions of the Standard Model

Contributions to SMEFT Coefficients

	Model	C_{HD}	C_{ll}	C_{Hl}^3	C^1_{Hl}	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
Spip zo							-1			
Shin se	S_1		1							
	Σ			5 8	$\frac{3}{16}$			$\frac{y_{ au}}{4}$		
	Σ_1			$-\frac{5}{8}$	$-\frac{3}{16}$			$\frac{y_{ au}}{8}$		
	N			$-\frac{1}{4}$	$\frac{1}{4}$					
	E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{ au}}{2}$		
	Δ_1					$\frac{1}{2}$		$\frac{y_{\tau}}{2}$		
	Δ_3					$-\frac{1}{2}$		$\frac{y_{\tau}}{2}$		
	B_1	1					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
Spin ze	ro Ξ	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b
	W_1 Ve	ctor $-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
Spin ze	ro 🤗 🚽							$-y_{ au}$	$-y_t$	$-y_b$
	$\{B, B_1\}$	/ector					1	$y_{ au}$	y_t	y_b
	$\{Q_1,Q_7\}$								y_t	
	Model	C_{HG}	C^3_{Hq}	C^1_{Hq}	$(C^{3}_{Hq})_{33}$	$(C^{1}_{Hq})_{33}$	C_{Hu}	C_{Hd}	C_{tH}	C_{bH}
	U		$-\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$			$rac{y_t}{2}$	
	D		$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				$rac{y_b}{2}$
	Q_5							$-\frac{1}{2}$		$rac{y_b}{2}$
	Q_7						$\frac{1}{2}$		$\frac{y_t}{2}$	
	T_1		$-\frac{5}{8}$	$-\frac{3}{16}$	$-\frac{5}{8}$	$-\frac{3}{16}$			$rac{y_t}{4}$	$\frac{y_b}{8}$
	T_2		$-\frac{5}{8}$	$\frac{3}{16}$	$-\frac{5}{8}$	$\frac{3}{16}$			$\frac{y_t}{8}$	$\frac{y_b}{4}$
	T	$-\frac{M_T^2}{v^2} \frac{lpha_s(0.02)}{8\pi}$			$-rac{1}{2}rac{M_T^2}{v^2}$	$rac{1}{2}rac{M_T^2}{v^2}$			$y_t rac{M_T^2}{v^2}$	

Constraints on Single-Field BSM Scenarios

Mass limits (TeV) if coupling = 1Coupling limit if mass = 1 TeVScalar could Ν $|\lambda_N|^2 < 3.9 \times 10^{-2}$ 1.6σ -Wh $|\hat{g}_{W_1}^{\phi}|^2 < 8.4 \times 10^{-2}$ 1.6σ No significant weigh ~<u>1 TeV</u> - - $\kappa_{\Xi}^2 < 1.1 \times 10^{-2} (\text{TeV})$ 1.6σ 1.1σ \mathbf{N}_1 $|y_{S_2}|^2 < 1.6 \times 10^{-10}$ pulls away Т $(s_L^t)^2 < 0.05$ from SM $\kappa_S^2 < 1.5 (\text{TeV}^2)$ ∆з $|\lambda_{\Delta_3}|^2 < 2.8 \times 10^{-2}$ Any single-Q₅ $|\lambda_{Q_3}|^2 < 0.25$ Σ $|\lambda_{\Sigma}|^2 < 4.5 \times 10^{-2}$ field T₂ $|\lambda_{T_2}|^2 < 0.11$ Ε $|\lambda_E|^2 < 2.1 \times 10^$ extension of U $|\lambda_U|^2 < 7.0 \times 10^{-2}$ SM must have Ø $Z_6 \cos \beta < 0.86$ $Q_1 Q_7$ $|\lambda_{Q_1Q_7}|^2 < 0.79$ mass scale > Vector must $|\lambda_{Q_T}|^2 < 0.14$ Q_7 800 GeV if $|\lambda_D|^2 < 3.6 \times 10^{-2}$ D weigh > 1.5 TeV BB $g_{BB}^2 < 0.41$ coupling = 1Ρ. $|\hat{g}_{B_{1}}^{\phi}|^{2} < 7.7 \times 10^{-3}$ T_1 $|AT_1| < 0.27$ Σ1 $|\lambda_{\Sigma_1}|^2 < 2.7 \times 10^ \Delta_1$ $|\lambda_{\Delta_1}|^2 < 1.7 \times 10^7$ 10 6 8

(Almost) model-independent lower limit on stop squark mass

Direct Search Constraints on Light Stops

- Patchwork of many modeldependent searches
- Indirect

 constraint
 excludes low mass region
 (almost) model independently

Model-Independent BSM Survey

- General combinations of operators
- Top-less sector fits SM very well
- Top sector does not fit so well
- Overall, pulls not excessive
- No hint of BSM

SMEFT Operators that can Contribute to W Mass

• Relevant SMEFT operators

$$\mathcal{O}_{HWB} \equiv H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}, \quad \mathcal{O}_{HD} \equiv \left(H^{\dagger} D^{\mu} H\right)^{\star} \left(H^{\dagger} D_{\mu} H\right)$$
$$\mathcal{O}_{\ell\ell} \equiv \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r}\right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t}\right), \quad \mathcal{O}_{H\ell}^{(3)} \equiv \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right) \left(\bar{\ell}_{p} \tau^{I} \gamma^{\mu} \ell_{r}\right)$$

• Contributions to W mass

$$\frac{\delta m_W^2}{m_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

• Contributions to S and T oblique parameters

$$\frac{v^2}{\Lambda^2}C_{HWB} = \frac{g_1g_2}{16\pi}S \quad , \quad \frac{v^2}{\Lambda^2}C_{HD} = -\frac{g_1g_2}{2\pi(g_1^2 + g_2^2)}T$$

SMEFT Fits to S and T Parameters

- SM prediction
- SMEFT fit without m_W
- SMEFT fit to 2020
 data + LHCb m_W
- SMEFT fit including CDF mW
- Little effect on S, pulls T away from SM

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

SMEFT Fit with the Mass of the W Boson

Non-zero coefficients for any of four operators can fit W mass

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

SMEFT Fits with the Mass of the W Boson

Subsets of four operators can fit w mass

SMEFT Fit with the Mass of the W Boson

> Pairs of four SMEFT operators can fit W mass

> > Sanz & You, arXiv:2204.05260

Model	Spin	SU(3)	SU(2)	U(1)	Parameters
S_1	0	1	1	1	(M_S,κ_S)
Σ	$\frac{1}{2}$	1	3	0	$(M_{\Sigma}, \lambda_{\Sigma})$
Σ_1	$\frac{1}{2}$	1	3	-1	$(M_{\Sigma_1}, \lambda_{\Sigma_1})$
N	$\frac{1}{2}$	1	1	0	(M_N,λ_N)
E	$\frac{1}{2}$	1	1	-1	(M_E,λ_E)
B	1	1	1	0	(M_B, \hat{g}_H^B)
B_1	1	1	1	1	(M_{B_1},λ_{B_1})
Ξ	0	1	3	0	(M_{Ξ},κ_{Ξ})
W_1	1	1	3	1	$(M_{W_1}, \hat{g}^{arphi}_{W_1})$
W	1	1	3	0	(M_W, \hat{g}_W^H)

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Model	C_{HD}	C_{ll}	$C_{H u}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
S_1		1							
Σ			$\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_1			$\frac{1}{16}$	$-\frac{3}{16}$			$rac{y_{ au}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$rac{y_{ au}}{2}$		
B_1	1					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
В	-2						$-y_{ au}$	$-y_t$	$-y_b$
[1]	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W	$\frac{1}{2}$					$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$

Operators

contributing to m_W

Model	C_{HD}	C_{ll}	$C_{H u}^{(3)}$	$C_{Hl}^{\left(1 ight)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
S_1		1							
Σ	Wrong	sign	X	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_1	VIIOng		X	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$		
B_1	X					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
В	-2						$-y_{ au}$	$-y_t$	$-y_b$
[1]	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W	X					$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$
	Operators								

contributing to m_W

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Model	C_{HD}	C_{ll}	$C_{H u}^{(3)}$	$C_{Hl}^{\left(1 ight)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
S_1		1							
Σ	Wrong	sign	X	$\frac{3}{16}$			$\frac{y_{ au}}{4}$		
Σ_1	VIONS	51611	X	$-\frac{3}{16}$			$\frac{y_{ au}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{ au}}{2}$		
B_1	X					$-\frac{1}{2}$	$-\frac{y_{ au}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
B	-2	Righ	nt sign				$-y_{ au}$	$-y_t$	$-y_b$
[E]	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W	X					$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$
	Op	Operators							
	contributing to mw			Dr	anacchi IE	Madigan M	imacu Sanz	9. Vou prVii	"2204 OE26

Models Fitting the Mass of the W Boson

68 and 95% CL ranges of masses assuming unit couplings

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Models Fitting the Mass of the W Boson

	Model	Pull	Best-fit mass	$1-\sigma$ mass	$2-\sigma$ mass	$1-\sigma$ coupling ²
Spins			(TeV)	range (TeV)	range (TeV)	range
V	W_1	6.4	3.0	[2.8, 3.6]	[2.6, 3.8]	[0.09, 0.13]
S	B	6.4	8.6	[8.0, 9.4]	[2.7, 3.2]	[0.011, 0.017]
V	Ξ	6.4	2.9	[2.8, 3.1]	[2.7, 3.2]	[0.011, 0.017]
F	N	5.1	4.4	[4.1, 5.0]	[3.8, 5.8]	[0.040, 0.060]
F	E	3.5	5.8	[5.1, 6.8]	[4.6, 8.5]	[0.022, 0.039]

Best-fit, 68 and 95% CL ranges of masses 68% CL ranges of assuming unit couplings couplings for 1 TeV

Searching for Models Fitting the Mass of the W Boson

- W: Isotriplet vector boson, mass ~ 3 TeV x coupling, electroweak production, accessible at LHC?
- B: Singlet vector boson, mass ~ 8 TeV x coupling, phenomenology depends on fermion couplings, too heavy for LHC?
- Ξ : Isotriplet scalar boson, mass ~ 3 TeV x coupling, detectable in LHC searches for heavy Higgs bosons?
- N: Isosinglet neutral fermion, mass ~ 4 TeV x coupling, similar to (righthanded) singlet neutrino
- E: Isosinglet charged fermion, mass ~ 6 TeV x coupling, similar to (righthanded) singlet electron

W Mass in Supersymmetry?

- Survey of possible contributions from electroweak particles
- Can reach old world average, but not CDF or new world average
- Additional contribution from stops?

Bagnaschi, Chakraborti, Heinemeyer, Saha & Weiglein, arXiv:2203.15710

Quo Vadis m_W?

- The jury is still out concerning the experimental measurement
 - Tension with SM, previous measurements

"Extraordinary claims require extraordinary evidence"

- Nevertheless, much theoretical speculation (70 papers!)
- 4 SMEFT operators can increase m_W
- Prospects for the LHC?
- 3 SMEFT operators generated by single field extensions of the SM at tree level
 - Vector bosons W or B, scalar boson Ξ , fermions N, E
- Could also be important loop effects (supersymmetry?)