Three questions, one answer

Neutrinos as the key to the universe as we know it

Yuval Grossman

Cornell

Three questions

Three open questions in physics

- How neutrinos acquire their tiny masses?
- Why is there only matter in the universe?
- Why the electron and proton have exactly the same charge?

It is plausible that one mechanism answers all three questions

Outline

- A short introduction to HEP
- Q1: Neutrinos
- Q2: Matter and anti-matter
- Q3: Electric charge quantization
- Conclusion: A possible answer and what next

Introduction to HEP

What is HEP

A very simple question

Building Lagrangians

- Choosing the generalized coordinates (fields)
- Imposing symmetries and how fields transform (input)
- The Lagrangian is the most general one that obeys the symmetries
- We truncate it at some order, usually fourth

The Standard Model (SM)

It explains almost everything we see in Nature

- The symmetry is $SU(3)_C \times SU(2)_L \times U(1)_Y$
- There are three generations of fermions (flavors) and one scalar (Higgs)

$$Q_L(3,2)_{+1/6}$$
 $U_R(3,1)_{+2/3}$ $D_R(3,1)_{-1/3}$
 $L_L(1,2)_{-1/2}$ $E_R(1,1)_{-1}$ $H(1,2)_{+1/2}$

- H gives $SU(2)_L \times U(1)_Y \rightarrow U(1)_{\rm EM}$
- Each group coressponeds to a force
- SU(N) is non-Abelian while U(1) is Abelian

Accidental symmetries

Two kinds of symmetries

- Input: symmetries we impose
- Output: symmetries due to the truncation (accidental)
- Example: The period of a pendulum does not depend on the amplitude

The accidental symmetries of the SM

- The SM has baryon number and lepton number as accidental symmetries
- That explains why the proton is stable
- There are fundamental differences between baryon number and electric charge conservations
 - Electric charge conservation is imposed while baryon and lepton numbers are not
 - Electric charge comes with a force (the EM force)
 while baryon and lepton numbers do not

1: Neutrino masses

What are neutrinos

- Neutral fermions
- They appear massless to a very good approximation (we did not detect them traveling slower than light)
- They come with three flavors: ν_e , ν_μ and ν_τ
- Think of flavor as an "new" observable: \widehat{F}
- Generally speaking

$$m_{\nu} = 0 \Rightarrow [H, F] = 0$$
 $m_{\nu} \neq 0 \Rightarrow [H, F] \neq 0$

Non conservation of flavor is a sign for massive neutrinos

Probing neutrino masses

- Direct searches are not sensitive to very small masses
- Neutrino oscillation experiments are sensitive to m_{ν}
- For example: producing ν_{μ} and detecting ν_{τ} far away
- Many different experiments found clear evidences for neutrino oscillations that give

$$m_{\nu} \sim \text{few} \times 10^{-2} \text{ eV}$$

• Compared to $m_e \sim 10^6 \; \mathrm{eV}$ and $m_P \sim 10^9 \; \mathrm{eV}$

neutrinos have tiny masses

Neutrino masses in the SM

The SM implies that neutrinos are exactly massless

- We need to add something to the SM
- There are several ways to extend the SM such that neutrinos are massive
- ullet One idea: add a "sterile" heavy fermion to the SM, N

Why such a new particle lead to massive neutrinos?

$m_{\nu} \neq 0$: A 2nd look at 2nd order PT

- Small corrections to energies due to the whole spectrum
- We can reverse the logic: The correction is a way to probe the high energy states
- Consider a two level system with $E_1 \gg E_0$

$$\Delta E_0 \propto \frac{\left|\langle 0|\Delta H|1\rangle\right|^2}{E_0 - E_1} \sim \frac{1}{E_1}$$

- We see the sensitivity to the "heavy" states
- In high energy physics, $E \rightarrow m$, and thus

$$m \sim \frac{1}{M}$$

Neutrino masses

ullet The heavy fermion N gives mass to the light neutrino due to 2nd order perturbation theory

$$m_{\nu} \sim \frac{m_W^2}{M_N}$$

• The scale is $M_N \lesssim 10^{15} \ \mathrm{GeV}$

- The see-saw mechanism
- Lepton number is broken

Neutrino masses: the question

What is the mechanism that gives neutrinos their masses? In particular, is it related to N?

2: Matter, anti-matter and CPV

Matter, anti-matter and CPV

- We know anti-matter exists. The positron seems to be an exact "mirror image" of the electron
- The formal transformation between them is called CP
- Matter and anti-matter cannot coexist. When they meet they annihilate
- The universe has a net positive baryon number
- In the SM baryon number is an accidental symmetry.
 We expect the same amount of matter and anti-matter, basically zero
- Measurements (BBN and the CMB) imply

$$\eta \equiv \frac{n_B}{n_\gamma} = \text{few} \times 10^{-10}$$

Baryogenesis

$$\eta \equiv \frac{n_B}{n_\gamma} = \text{few} \times 10^{-10}$$

The questions

- Why is there only matter around us?
- Can we explain the measured number?

Ways to baryogenesis

There are several logical possibilities

- Initial conditions are such that $n_B \neq 0$
- Separation: we are here, they are there
- Dynamical generation of baryons in the early universe

The third possibility looks much more attractive

The Sakharov conditions

The three Sakharov conditions for dynamically generated baryon asymmetry

Baryon number violating process

$$X \to p^+ e^-$$

C and CP violation

$$\Gamma(X \to p^+ e^-) \neq \Gamma(\overline{X} \to p^- e^+)$$

Deviation from equilibrium

$$\Gamma(X \to p^+e^-) \neq \Gamma(p^+e^- \to X)$$

SM baryogenesis

The three Sakharov conditions are satisfied in the SM

- Baryon number violating process: sphalerons
- The weak interaction violates C and CP
- Out of equilibrium from the electroweak phase transition

In principle, the SM can generate a world with matter

The problem of SM baryogenesis

While the SM makes baryons, it is not efficient enough

$$\eta_{\rm SM} \sim 10^{-25} \ll 10^{-10}$$

An open question is therefore:

What is the source of the baryons in the universe?

Leptogenesis

- ullet Using the N that was postulated for neutrino masses
- ullet Dynamic generation of lepton number via N decay
- Since this occurs at very high temperature, the sphalerons convert lepton asymmetry to baryon asymmetry
- For this to work $M_N \gtrsim 10^{11} \ {\rm GeV}$

Baryogenesis: the question

What is the mechanism that generates baryons in the universe? In particular, is it related to N?

Q3: Why $q_e = -q_P$?

Ways for charge quantization

Why all charges are a integert times $q_e/3$ while the masses are all over the place?

Several ideas

- Just an accident
- Dirac quantization
- $U(1)_{\rm EM}$ is part of a rotation in a larger space

Charge quantization

What is charge? The amount of rotation

$$\psi \to e^{iq\theta} \psi$$

- Think of rotation in 2 and 3 dimensions
- 2d: $r \to e^{iq\theta}r$ for any q a number
- 3d: $r \to e^{iq_i\theta_i}r$ where q_i is a matrix and $[q_i, q_j] = i\epsilon_{ijk}q_k$
- q is quantied if the 2d rotation is part of a 3d rotation

Non-Abelian symmetries imply charge quantization

GUT

- GUT: The SM symmetry group is a part of a bigger group
- In that case, all the SM fields are part of a bigger multiplet (like e and ν in the weak interaction)
- The GUT group is broken to the SM one

GUT implies $q_e = -q_P$

GUT: how it works?

- All the SM fields are part of a bigger group
- Our best candidate for GUT is SO(10)

$$SO(10) \rightarrow SU(3) \times SU(2) \times U(1)$$

- In the SM we have 15 DoF, and in SO(10) we need 16
- The one more field that we need is not charged under the SM. It has the same properties as ${\cal N}$
- Its mass is of the order of the GUT breaking scale
- What is the scale associated with the breaking?

GUT scale

$$M_{GUT} \sim 10^{16} \text{ GeV} \implies M_N \lesssim 10^{16} \text{ GeV}$$

GUT: the question

Is GUT realized in Nature? In particular, is N part of it?

All together now

All together now

- Why are neutrinos massive?
- How we ended up in a universe with matter?
- Do we have a GUT?

It all points to that new particle, N

Can the same N do it all?

Can the same N do it all?

What next?

Many experiments are running and others are planed

- to look for CP violation in neutrino oscillations
- to search for proton decay
- to observe neutrinoless double beta decay

We expect to see signals in all of them

Conclusions

Conclusions

(maybe) Thanks the neutrinos that we are here

