PULSAR WIND NEBULAE: A CLASS OF EXTRAORDINARY COSMIC ACCELERATORS

Elena Amato

INAF- Osservatorio Astrofisico di Arcetri Firenze - Italy

PULSAR WIND NEBULAE

SNRs WITH

CENTER FILLED MORPHOLOGY BROAD NON THERMAL SPECTRUM FLAT RADIO SPECTRUM $F_{\nu} \propto \nu^{-\alpha}, \quad \alpha < 0.5$

Multi-wavelength emission and size shrinkage

Jet-torus morphology in X-rays

Crab Nebula (composite)

G21.5-0.9 (Chandra)

3C58 (Chandra)

THE CRAB NEBULA

BROAD BAND NON-THERMAL SPECTRUM

synchrotron radiation by relativistic particles in the nebular B field

PARTICLES AND FIELD FROM ROTATIONAL ENERGY LOST BY PULSAR

PSR IS A ROTATING MAGNET THAT SLOWS DOWN DUE TO E.M. TORQUE [Pacini 1969]

WHY PWNE ARE INTERESTING

$L_{\text{radio}} \lesssim 10^{-10} \dot{E}_{\text{PSR}}, \quad L_{\gamma} \lesssim 10^{-2} \dot{E}_{\text{PSR}}, \quad L_{\text{PWN}} \ge 0.1 \dot{E}_{\text{PSR}}$

PLASMA PHYSICS:

PULSAR PHYSICS:

• CLOSEST AND BEST STUDIED RELATIVISTIC PLASMAS • PARTICLE ACCELERATION AT THE MOST RELATIVISTIC SHOCKS IN NATURE ($10^4 < \Gamma < 10^8$)

COSMIC RAY PHYSICS:

ONLY SOURCES WITH DIRECT EVIDENCE OF PeV PARTICLES
LIKELY MAIN CONTRIBUTORS OF CR POSITRONS

GAMMA-RAY ASTROPHYSICS:

MOST NUMEROUS CLASS OF GALACTIC SOURCES

- EXTENDED TeV HALOES
- LEPTONIC (AT LEAST) PEVATRONS

BASIC PICTURE FOR YOUNG SYSTEMS

 $= P_{PWN} = \frac{\dot{E} t}{4\pi R_N^3}$ $\frac{\dot{E}}{4\pi cR_{TS}^2}$ $R_{TS} = \left(\frac{v_N}{c}\right)$

5

 R_N

BASIC PICTURE FOR YOUNG SYSTEMS

$$R_{TS} = \left(\frac{v_N}{c}\right)^{1/2} R_N$$

DISSIPATION AND PARTICLE ACCELERATION AT TS

Adapted from Kennel & Coroniti 1984 [Del Zanna & Olmi 2017]

PWN EVOLUTION

SNR EXPANSION SLOWS DOWN + LARGE FRACTION OF ALL THE PULSARS BORN WITH HIGH KICK VELOCITY

COMPRESSED PWN OFFSET PW

REVERBERATION PHASE

RELIC NEBULAE

PSR MAY CROSS RS DURING COMPRESSION AND LEAVE A RELIC

EVOLVED PWNE

OBSERVATIONS: COMETARY NEBULAE

Klinger et al. 2018]

PSR J1509-5850 [Hui & Becker 2007, Klinger et al. 2016]

BOW SHOCK NEBULAE

ONE ZONE MODELS

(Pacini & Salvati 1973, EA+ 2000, Bucciantini+ 2011....) (also Fraschetti & Pohl 2017 for log-parabola injection) **ACCELERATOR!**

OPEN QUESTIONS

WHAT WE KNOW:

 \bullet most efficient accelerators in nature $\epsilon_{\rm acc} \lesssim 30\,\%$

• ENERGY FLUX THAT LEAVES THE PSR

$$\dot{E} = \kappa \dot{N}_{GJ} m_e \Gamma c^2 \left(1 + \frac{m_i}{\kappa m_e} \right) (1 + \sigma)$$
$$\sigma = \frac{B^2}{4\pi n_+ m_e c^2 \Gamma^2}$$

WE DO NOT KNOW:

- WHAT THE ACCELERATION MECHANISM(S) IS (ARE)

POSSIBILITIES DEPEND ON WIND COMPOSITION (IONS? κ?) WIND MAGNETIZATION (σ?)

- HOW PARTICLES EVENTUALLY ESCAPE

IN PRINCIPLE BOTH DEPEND ON LOCATION

PARTICLE ACCELERATION MECHANISMS (BEST STUDIED)

FERMI MECHANISM

FFICIENT AT UNMAGNETIZED e+-e- RELATIVISTIC SHOCKS [Spitkovsky 08]

- NO ACCELERATION AT σ>0.001 SUPERLUMINAL SHOCKS [Sironi & Spitkovsky 09, 11]

- TOO SLOW TO GUARANTEE MAXIMUM ENERGY OBSERVED IN CRAB [Pelletier+ 17]

POSSIBLY EFFICIENT AT HIGHLY TURBULENT MODERATELY MAGNETIZED

SHOCKS [Lemoine 17, Giacinti & Kirk 18, Cerutti & Giacinti 20]

✓ RIGHT SPECTRUM FOR X-RAYS

DRIVEN MAGNETIC RECONNECTION:

✓ BROAD AND HARD PARTICLE SPECTRA IF σ≥30 AND κ>10⁸ [Sironi & Spitkovsky 11b]

- FOR THIS LARGE κ WIND LIKELY TO DISSIPATE BEFORE SHOCK [Kirk & Skjeraasen 03]

RESONANT CYCLOTRON ABSORPTION:

✓ SPECTRA AND ACCELERATION EFFICIENCY DEPEND ON ENERGY FRACTION IN

IONS: U_i/U_{TOT}=0.8-0.6, γ=1.5-3, ε_{ACC}=0.3-0.03 [Hoshino+92, EA & Arons 06; Stockem+12]

 \checkmark HIGHER σ IMPLIES FASTER ACCELERATION

- NO ACCELERATION IF $\kappa > m_i/m_e$

PARTICLE ACCELERATION MECHANISMS: SUMMARY OF REQUIREMENTS

HOWEVER SEE VARIANTS

DRIVEN MAGNETIC RECONNECTION

MAGNETIZATION: REQUIRES HIGH

PLASMA MULTIPLICITY: REQUIRES HIGH

ION CYCLOTRON ABSORPTION IN ION DOPED PLASMA

PLASMA MULTIPLICITY: REQUIRES LOW

CONSTRAINING THE WIND MAGNETIZATION

17/20 STATIC MODELS OF PWNE

[Rees & Gunn 1974, Kennel & Coroniti 1984, Emmering & Chevalier 1987, Begelman & Li 1992]

particle spectral index(es)
$$\rightarrow \gamma = 2.3$$

wind Lorentz factor $\rightarrow \Gamma = 3 \times 10^6$
wind magnetization $\rightarrow \sigma = v_N/c \approx 3 \times 10^{-3}$

FROM DYNAMICS AND RADIATION MODELING OF OPTICAL /X-RAY EMISSION

CHANDRA'S VIEW OF PWNE

Pavlov et al. 2001

(Weisskopf+ 00)

Jet-torus morphology of inner nebula

Counter jet

Equatorial torus

Polar jet

B1509-58 (X-rays+radio)

(Slane et al., 2009)

THE ANISOTROPIC PULSAR WIND

Coroniti 90

Kirk & Lyubarsky 01

2D MHD NUMERICAL MODELING: RINGS AND TORII

A: ULTRARELATIVISTIC WIND B: SUBSONIC OUTFLOW C: <u>SUPERSONIC FUNNEL</u>

 $F(\theta) \propto \sin^2(\theta)$

 $B(\theta) \propto \sqrt{\sigma} \sin \theta \ G(\theta)$

2D MHD NUMERICAL MODELING: JETS

EQUIPARTITION NEEDED FOR JET FORMATION

IN 2D JETS REQUIRE σ >0.03

Del Zanna, EA, Bucciantini 04, 06

BEHIND PRETTY PICTURES

 $B_{sim} \approx 10^{-5} G$

Volpi+ 08, Olmi+14

 $B_{obs} \approx 10^{-4} G$

3D RMHD SIMULATIONS

GLOBAL DYNAMICS DIFFERENT

INNER DYNAMICS SIMILAR

EARLY SUGGESTION (Begelman 98): KINKS REDUCE HOOP STRESS WITH LITTLE DISSIPATION

LONGER 3D RMHD SIMULATIONS

SELF SIMILAR PHASE FULLY REACHED

ALL IS SOLVED?

- ✓ SHRINKAGE AND WISPS VARIABILITY OK
- NO BRIGHT X-RAY TORUS

AVERAGE FIELD STILL TOO LOW ARTIFICIAL STEEPENING OF X-RAY PARTICLE SPECTRUM STILL NEEDED
 IC SPECTRUM STILL OVERESTIMATED

EVEN HIGHER σ NEEDED <u>ON AVERAGE</u>

DIFFERENT LOCATIONS OF PARTICLE ACCELERATION?

CONSTRAINING THE PULSAR MULTIPLICITY

K IS CONSTRAINED BY RADIO EMITTING PARTICLES

RADIO EMITTING PARTICLES HAVE LONG LIFETIMES: DO NOT NEED TO BE PART OF THE FLOW

> IF PART OF THE FLOW $\kappa \approx 10^6$ $\Gamma \approx 10^4$ OTHERWISE $\kappa \approx 10^3 - 10^4$ $\Gamma \approx 10^6 - 10^7$

RADIO EMISSION

CONSTRAINING THE LOCATIONS OF PARTICLE ACCELERATION

HINTS ON LOCATIONS OF PARTICLE ACCELERATION

LOWER ENERGY ANYWHERE

TAKE HOME MESSAGE

NEBULAR DYNAMICS AND HIGH ENERGY EMISSION PROPERTIES

TOO LARGE FOR FERMI ACCELERATION BUT TURBULENCE MIGHT HELP

MODELLING OF RADIO EMISSION $\kappa \approx \text{few} \times 10^3$ AND $\Gamma > \text{few} \times 10^6$ VIABLE

ION CYCLOTRON VIABLE

MODELLING OF MULTIFREQUENCY VARIABILITY OF INNER NEBULA

ACCELERATION OF LOW AND HIGH ENERGY PARTICLES IN DIFFERENT REGIONS LOW ENERGY FROM TURBULENT ACCELERATION IN THE NEBULA?

PINNE AS PEVATRONS

MAXIMUM ENERGY IN A PWN

IN YOUNG ENERGETIC SYSTEMS ACCELERATION IS LOSS LIMITED

STRICT LIMIT FROM THE PSR POTENTIAL DROP $\Phi_{PSR} = \sqrt{\dot{E}/c}$

$$E_{max,abs} = e\xi_E B_{TS} R_{TS}$$

$$\frac{B_{TS}^2}{4\pi} = \xi_B \frac{\dot{E}}{4\pi R_{TS}^2 c}$$

$$E_{max,abs} = E_{max,abs}$$

$$E_{max,abs} = e\xi_E \ \xi_B^{1/2} \sqrt{\dot{E}/c} \approx 1.8 \ PeV \ \xi_E \ \xi_B^{1/2} \ \dot{E}_{36}^{1/2}$$

LEPTONIC OR HADRONIC PEVATRONS?

12 SOURCES DETECTED BY LHAASO ABOVE 100 TeV

Table 1 | UHE γ-ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV (× σ)	E _{max} (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 -0.10 ^{+0.16}	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

Cao+ 2021

PeV PROTONS OR ELECTRONS?

ALL SOURCES HAVE A PSR IN THE FIELD BUT

LHAASO PEVATRONS AND PWNE

MAXIMUM ELECTRON ENERGY AS A FUNCTION OF PSR POTENTIAL DROP AND LHAASO SOURCES

[Lopez-Coto+ in prep]

HADRONS IN CRAB?

Fiori, EA + in prep.

 $Q_p(E) \propto \delta(E - m_p c^2 \Gamma)$

(EA & Arons 06; EA, Guetta, Blasi 03)

EVOLVED SYSTEMS AND PARTICLE ESCAPE

OBSERVATIONS: JETS AND HALOES

[Posselt+ 2017]

Extended TeV halo [Abeysekara+ 2017]

Lighthouse nebula [Pavan+ 2016]

Guitar nebula [Cordes+ 1993, Wong+ 2003]

G327 [Temim+ 2009]

PSR J1509-5850 [Klinger+ 2016]

INTERPRETATION: JETS AND HALOES

[Cordes+ 1993, Wong+ 2003]

JETS CONSISTENT WITH SYNCHROTRON EMISSION OF PARTICLES WITH $E \approx e \Phi_{PSR}$ IN A FEW X 10µG MAGNETIC FIELD [Bandiera 2008]

HALOS CONSISTENT WITH ICS EMISSION OF PARTICLES WITH $E \approx e \Phi_{PSR}$ IN A $\approx \mu G$ MAGNETIC FIELD AND $D \approx 10^{-2} D_{gal}$ [Abeysekara+ 2017, Lopez-Coto & Giacinti 2018, Lopez-Coto + 2021]

2D RMHD MODELS OF BS PWNE

Bucciantini, EA, Del Zanna 2005

FORMATION OF BOW SHOCK, TS DEFORMATION, CYLINDRICAL TAIL WITH MILDLY RELATIVISTIC OUTFLOW IN THE TAIL

3D MHD MODELS OF BSPWNE

PARAMETERS OF THE PULSAR WIND

3D RMHD SIMULATIONS OF BSPWNE

[Olmi & Bucciantini 2019]

PARTICLE ESCAPE FROM BOW SHOCK PWNE

HIGH ENERGY PARTICLES INJECTED CLOSE TO THE POLAR AXIS STREAM OUT FROM RECONNECTION POINT AND FORM JETS IN THE ISM B-FIELD

Olmi & Bucciantini 2019b

ENERGY DEPENDENCE OF THE ESCAPE

PWNE AS CR SOURCES

 IF POSITRONS ONLY SECONDARY, FRACTION SHOULD DECREASE WITH INCREASING ENERGY
 BOW SHOCK PWNE EARLY SUGGESTED AS BEST CANDIDATES TO EXPLAIN THE EXCESS [e.g. Blasi & EA 11]

CR POSITRONS FROM PWNE

• PSR PARAMETERS ACCORDING TO Faucher-Giguere & Kaspi 06

• BROKEN POWER-LAW SPECTRUM STEEPENING AT \sim 500 GeV

PROPAGATION PARAMETERS
 THAT FIT ALL AVAILABLE DATA

SUMMARY AND CONCLUSIONS

- 3D MHD SIMULATIONS REQUIRE σ > A FEW TO REPRODUCE SPETRUM AND MORPHOLOGY
- FERMI MECHANISM PROBLEMATIC, THOUGH SHOCK CORRUGATION MIGHT HELP
- DRIVEN MAGNETIC RECONNECTION DIFFICULT TO MAKE SELF-CONSISTENT, BUT MAGNETIC RECONNECTION IN HIGH TURBULENT PLASMA...
- RADIO PARTICLES DO NOT NEED TO BE PART OF THE FLOW AND SPECTRUM CAN RESULT FROM ACCELERATION IN HIGH σ TURBULENCE [Comisso+ 2020]
- MULTIPLICITY CAN BE SMALL ENOUGH FOR ION CYCLOTRON ... BUT ARE THERE SUFFICIENT IONS?
- CRAB IS A LEPTONIC PEVATRON, BUT IS IT ALSO A HADRONIC PEVATRON?
- EVOLVED SYSTEMS MAY ACCELERATE PARTICLES TO FULL POTENTIAL DROP AND THEY SEEM TO DO IT
- MOST LHAASO SOURCES COULD INDEED BE PWNe
- ISOTROPIC PARTICLE ESCAPE EFFICIENT ONLY AT THE HIGHEST ENERGIES
- ESCAPING PARTICLES CARRY ELECTRIC CURRENT, POSSIBLY IMPORTANT TO EXPLAIN HALOES ...
- PWNe STILL THE MOST LIKELY CR POSITRON SOURCES ABOVE \sim 30 GeV