B-physics anomalies and the flavor problem

<u>Gino Isidori</u> [University of Zürich]

- Introduction
- A closer look to the data
- Effective Field Theory considerations
- From EFT to simplified models
- Speculations on ultraviolet completions
- Conclusions

Introduction

(*almost*...) all <u>microscopic phenomena</u> we observe in Nature seem to be well described by the SM, a simple and elegant Theory that we continue to call "model" only for historical reasons...

However, despite all its phenomenological successes, the SM has some deep unsolved problems (*hierarchy problem*, *flavor problem*, *neutrino masses, dark-matter, dark energy, inflation...*)

The Standard Model should be regarded as an *Effective Field Theory* (*EFT*)

i.e. the limit (*in the range of energies and effective couplings so far probed*) of a more fundamental theory with new degrees of freedom

What we know after the first phase of the LHC is that:

- The Higgs boson is SM-like and is "light" (completion of the SM spectrum)
- There is a mass-gap above the SM spectrum

DESY Physics Colloquium, 1 June 2021

What we know after the first phase of the LHC is that:

- The Higgs boson is SM-like and is "light" (completion of the SM spectrum)
- There is a mass-gap above the SM spectrum

We identified the *"light"* ↔ *"large"* pieces of our *"construction game"* & their long-range interactions

DESY Physics Colloquium, 1 June 2021

What we know after the first phase of the LHC is that:

- The Higgs boson is SM-like and is "light" (completion of the SM spectrum)
- There is a mass-gap above the SM spectrum

Reconstructing the UV theory from its low-energy limit is a very difficult problem with <u>no unique solution</u>

[It took more than 35 years to go from the Fermi Theory to the SM...]

DESY Physics Colloquium, 1 June 2021

Introduction

The most interesting hints toward UV dynamics come from possible *un-natural features* of the EFT.

UV Theory

Introduction

The most interesting hints toward UV dynamics come from possible *un-natural features* of the EFT.

UV imprint

UV imprint

At large distances, not enough "variables" to describe the violation of the symmetry [~*multipole expansion*]

...the violations of Lepton Flavor Universality recently reported by experiments belong to this category

<u>A closer look to the data</u>

Since 2013 results in semi-leptonic B decays started to exhibit tensions with the SM predictions connected to a possible violation of Lepton Flavor Universality

More precisely, we seem to observe a <u>different behavior</u> (*beside pure* kinematical effects) of different lepton species in the following processes:

- $b \rightarrow s l^+l^-$ (neutral currents): μvs. e
- b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

<u>A closer look to the data</u>

Since 2013 results in semi-leptonic B decays started to exhibit tensions with the SM predictions connected to a possible violation of Lepton Flavor Universality

More precisely, we seem to observe a <u>different behavior (beside pure</u> kinematical effects) of different lepton species in the following processes:

- b \rightarrow s l^+l^- (neutral currents): μ vs. e
- b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

N.B: LFU is an <u>accidental symmetry</u> of the SM Lagrangian in the limit where we neglect the lepton Yukawa couplings:

$$\mathscr{L}_{SM} = \mathscr{L}_{gauge} + \mathscr{L}_{Higgs} \Big|_{y_l} = 0$$

accidental global symmetry: 3×3 (unitary) transformations of lepton fields in flavor space

A closer look to the data

Since 2013 results in semi-leptonic B decays started to exhibit tensions with the SM predictions connected to a possible violation of Lepton Flavor Universality

More precisely, we seem to observe a <u>different behavior (beside pure</u> kinematical effects) of different lepton species in the following processes:

- $b \rightarrow s l^+l^-$ (neutral currents): μ vs. e
- b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

N.B: LFU is an <u>accidental symmetry</u> of the SM Lagrangian in the limit where we neglect the lepton Yukawa couplings.

LFU is <u>badly broken</u> in the Yukawa sector: $y_e \sim 3 \times 10^{-6}$, $y_{\mu} \sim 3 \times 10^{-4}$, $y_{\tau} \sim 10^{-2}$

but all the lepton Yukawa couplings are small compared to SM gauge couplings, giving rise to the (*approximate*) universality of decay amplitudes which differ only by the different lepton species involved

<u>A closer look to the data</u>

• b \rightarrow s l^+l^- (neutral currents)

List of the observables exhibiting anomalies (= *deviations from SM*):

- P'_5 anomaly $[B \rightarrow K^* \mu \mu$ angular distribution]
- Smallness of all $B \rightarrow H_s \mu \mu$ rates $[H_s = K, K^*, \phi (\text{from } B_s)]$
- [⋆] LFU ratios (μ vs. e) in B → K^{*}ℓℓ & B → K ℓℓ

chronological order

• Smallness of $BR(B_s \rightarrow \mu\mu)$

th. error <1%

th. error few %

<u>A closer look to the data</u>

• b \rightarrow s l^+l^- (neutral currents)

List of the observables exhibiting anomalies (= *deviations from SM*):

- P'_5 anomaly $[B \rightarrow K^* \mu \mu$ angular distribution]
- Smallness of all $B \rightarrow H_s \mu \mu$ rates $[H_s = K, K^*, \phi (\text{from } B_s)]$
- [⋆] LFU ratios (μ vs. e) in B → K^{*}ℓℓ & B → K ℓℓ
- Smallness of BR($B_s \rightarrow \mu\mu$)

Some of these observables are affected by irreducible theory errors (*form factors + long-distance contrib.*)

The recent result $R_{K} \approx \frac{\Gamma(B \rightarrow K \mu \mu)}{\Gamma(B \rightarrow K ee)} \approx 0.85 \pm 0.05$ LHCb '21

strengths the consistency of a picture which was already very coherent and points to New Physics of <u>short-distance</u> origin.

<u>A closer look to the data</u>

To describe $b \rightarrow sll$ decays we

- build an EFT Lagrangian
- evolve it down to $\mu \sim m_b$
- evaluate hadronic matrix elements

$$\mathcal{L}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \sum_i C_i \mathcal{O}_i$$

N.B.: long-distance effect cannot induce LFU breaking terms (\rightarrow LFU ratios "*clean*") and cannot induce axial-current contributions (\rightarrow B_s \rightarrow µµ "*clean*")

<u>A closer look to the data</u>

The LFU ratios:

$$R_{\rm H} = \frac{\int d\Gamma(B \to H \,\mu\mu)}{\int d\Gamma(B \to H \,ee)} \qquad (H=K, \,K^*)$$

SM prediction very robust: (R_H)= 1 [*up tiny QED and lepton mass effects*] Bordone, GI, Pattori '16 GI, Nabeebascus, Zwicky '20

Deviations from the SM predictions ranging from 2.1σ to 3.1σ in each of the 3 bins measured by LHCb

 $B_s \rightarrow \mu \mu$:

BR(B_s→µµ)_{SM} = (3.66±0.14) × 10⁻⁹ Beneke *et al.* '19 BR(B_s→µµ)_{exp} = (2.85±0.32) × 10⁻⁹ ATLAS+CMS+LHCb '21

According to our best estimates of the SM rates, what is observed is a (15-20)% *deficit of the muon modes*

<u>Conservative fit</u> using "clean obs." only [$\Delta C_i^{\mu} = C_i^{\mu} - C_i^{e}$]:

A closer look to the data

<u>A closer look to the data</u>

<u>A closer look to the data</u>

Data point to (short-distance) NP effects in operators of the type

<u>A closer look to the data</u>

Data point to (short-distance) NP effects in operators of the type

Link to CC anomaly Greljo et al. '17

-1.0

-1.5

-0.5

 $\Delta \mathcal{C}_9^\mu = -\Delta \mathcal{C}_{10}^\mu$

0.0

0.5

1.0

A closer look to the data

• b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

$$R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X \ell \bar{\nu})} \quad X = D \text{ or } D^*$$

- Consistent results by three different exps. ~ 3.1σ excess over SM (*D* and *D** combined)
- SM predictions quite "clean": hadronic uncertainties cancel (*to large extent*) in the ratios

A closer look to the data

• b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

EFT considerations

<u>EFT considerations</u>

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible

Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

- Large coupling [*competing with SM tree-level*] in $bc \rightarrow l_3 v_3$ [R_D, R_{D*}]
- Small coupling [competing with SM loop-level] in bs $\rightarrow l_2 l_2$ [R_K, R_{K*}, ...]

✓ O(10⁻¹) suppress. for each 2nd gen. q_L or l_L [recall |V_{ts}| ~ 0.4×10⁻¹]

DESY Physics Colloquium, 1 June 2021

- ✓ O(10⁻¹) suppress. for each 2nd gen. q_L or l_L [recall |V_{ts}| ~ 0.4×10⁻¹]
- \checkmark Nice consistency among the 2 sets of anomalies

From EFT to simplified models

From EFT to simplified models

To move from the EFT toward more complete/ambitious models, we need to address two general aspects: the *flavor structure* of the underlying theory, and the nature of the possible *mediators*

The MFV paradigm:

Main idea:

- Concentrate on the Higgs hierarchy problem
- Postpone (*ignore*) the flavor problem

3 gen. = "identical copies" up to high energies

To better appreciate the change of perspective we need: let's consider the following analogy:

Suppose we could test matter only with long wave-length photons:

we would conclude that these two particles are "identical copies" but for their mass ...

To better appreciate the change of perspective we need: let's consider the following analogy:

Suppose we could test matter only with long wave-length photons:

we would conclude that these two particles are "<u>identical copies</u>" <u>but for their mass</u> ...

This is exactly the same (*potentially misleading*) argument we use to infer flavor universality in the SM...

These three (families) of particles seems to be "<u>identical copies</u>" <u>but for their mass</u> ...

The SM quantum numbers of the three families could be an "accidental" <u>low-energy</u> <u>property</u>: the different families may well have a very different behavior at high energies, as <u>signaled by their different mass</u>

Main idea:

- Flavor non-universal interactions already at the TeV scale:
- 1st & 2nd gen. have small masses because they are coupled to NP at heavier scales

Main idea:

- Flavor non-universal interactions already at the TeV scale:
- 1st & 2nd gen. have small masses because they are coupled to NP at heavier scales

Barbieri '21 Allwicher, GI, Thomsen '20 ... Bordone *et al.* '17 Panico & Pomarol '16 ... Dvali & Shifman '00

Non-trivial UV imprints

Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...

LQ (both scalar and vectors) have two general <u>strong advantages</u> with respect to the other mediators:

II. Direct 3^{rd} gen. LQ are also in better shape as far as direct searchessearches:are concerned (*contrary to Z'...*).

From EFT to simplified models [the possible mediators]

Leptoquarks suffered of an (*undeserved*) "bad reputation" for two main reasons:

Could mediate proton decay → not a general feature of the LQ: it depends on the model...!
 [e.g. not the case in the Pati-Salam model]

• Severe bounds from processes involving μ & e (such as $K_L \rightarrow \mu e$) \rightarrow avoided with non-trivial flavor structure [*e.g. non-univ. interactions*]

On the other hand, they are a "natural" feature in many SM extensions \rightarrow "Renaissance" of LQ models (*to explain the anomalies, but not only*...):

- Scalar LQ as PNG Gripaios, '10 Gripaios, Nardecchia, Renner, '14 Marzocca '18
- Vector LQ as techni-fermion resonances

Barbieri *et al.* '15; Buttazzo *et al.* '16, Barbieri, Murphy, Senia, '17 + ...

- Scalar LQ from GUTs & K SUSY Hiller & Schmaltz, '14; Becirevic *et al.* '16, Fajfer *et al.* '15-'17; Dorsner *et al.* '17; Crivellin *et al.* '17; Altmannshofer *et al.* '17 Trifinopoulos '18, Becirevic *et al.* '18 + ...
 - LQ as Kaluza-Klein excit.

Megias, Quiros, Salas '17 Megias, Panico, Pujolas, Quiros '17 Blanke, Crivellin, '18 + ... Vector LQ in GUT gauge models

> Assad *et al.* '17 Di Luzio *et al.* '17 Bordone et *al.* '17 Heeck & Teresi '18 + ...

From EFT to simplified models [the possible mediators]

	Model	<i>R</i> _{<i>K</i>^(*)}	R _{D(*)}	$R_{K^{(*)}} \& R_{D^{(*)}}$
Scalars	$S_1 = (3, 1)_{-1/3}$	×	\checkmark	×
	$R_2 = (3, 2)_{7/6}$	×	\checkmark	×
	$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	×
	$S_3 = (3, 3)_{-1/3}$	\checkmark	×	×
Vector	$U_1 = (3, 1)_{2/3}$	\checkmark	\checkmark	\checkmark
	∽ <i>U</i> ₃ = (3 , 3) _{2/3}	\checkmark	×	×

Which LQ explains which anomaly?

Angelescu, Becirevic, DAF, Sumensari [1808.08179]

Barbieri, GI, Pattori, Senia '15

- mediator: U_1
- → <u>flavor structure</u>: U(2)ⁿ

approx. flavor symmetry ensuring a CKM-like mixing $3^{rd} \rightarrow 1^{st}$, 2^{nd} gen. LQ of the Pati-Salam gauge group: $SU(4) \times SU(2)_L \times SU(2)_R$

Considering the U_1 only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \mathrm{h.c.}$$

and fitting <u>all low-energy data</u> leads to an excellent description of present data:

Considering the U_1 only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \mathrm{h.c.}$$

and fitting <u>all low-energy data</u> leads to an excellent description of present data which is fully <u>consistent with high-pT searches</u> [*within the reach of HL-LHC*]:

Considering the U_1 only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \mathrm{h.c.}$$

and fitting <u>all low-energy data</u> leads to an excellent description of present data which is fully <u>consistent with high-pT searches</u> [*within the reach of HL-LHC*]:

Considering the U_1 only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \text{h.c.}$$

and fitting <u>all low-energy data</u> leads to an excellent description of present data which is fully <u>consistent with high-pT searches</u>, and has interesting implications for future low-energy searches:

Speculations on UV completions

First observation: the Pati & Salam group, proposed in the 70's to unify quarks & leptons predicts the <u>only massive LQ</u> that is a good mediator for <u>both</u> anomalies:

Pati-Salam group: $SU(4) \times SU(2)_L \times SU(2)_R$

Main Pati-Salam idea: Lepton number as "the 4th color"

The massive LQ $[U_1]$ arise from the breaking SU(4) \rightarrow SU(3)_C×U(1)_{B-L}

$$SU(4) \sim \begin{bmatrix} SU(3)_{C} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & LQ \\ LQ & \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & -1 \end{bmatrix}$$

Speculations on UV completions

First observation: the Pati & Salam group, proposed in the 70's to unify quarks & leptons predicts the <u>only massive LQ</u> that is a good mediator for <u>both</u> anomalies:

Heeck, Teresi, '18

Pati-Salam group: $SU(4) \times SU(2)_L \times SU(2)_R$

Main Pati-Salam idea: Lepton number as "the 4th color"

The massive LQ $[U_1]$ arise from the breaking SU(4) \rightarrow SU(3)_C×U(1)_{B-L}

The problem of the "original PS model" are the strong bounds on the LQ couplings to $1^{st} \& 2^{nd}$ generations [e.g. M > 200 TeV from $K_L \rightarrow \mu e$]

Attempts to solve this problem simply adding
extra fermions or scalarsCalibbi, Crivellin, Li, '17;
Fornal, Gadam, Grinstein, '18

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

PS group:

$$SU(4) \times SU(2)_{L} \times SU(2)_{R} \quad \bullet \text{ flavor universality}$$

$$4321 \text{ models:} \quad SU(4) \times SU(3) \times G_{EW} = \begin{cases} SU(2)_{L} \times SU(2)_{R} \\ SU(2)_{L} \times U(1)_{Y} \end{cases}$$

flavor blind

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

Fuentes-Martin et al. '20 + work in prog.

An ambitious attempt to construct a *full theory of flavor* has been obtained embedding the Pati-Salam gauge group into an extra-dimensional construction:

Speculations on UV completions

In most *PS-extended models* collider and low-energy pheno are controlled by the effective 4321 gauge group that rules TeV-scale dynamics Di Lu

Despite the apparent complexity, the construction is highly constrained

consistent

with

present

data !

- Positive features the EFT reproduced
- Calculability of $\Delta F=2$ processes
- Precise predictions for high-pT data

New striking collider signature: G' ("*coloron*" = *heavy color octet*)

 \rightarrow strongest constraint on the scale of the model from pp $\rightarrow t \bar{t}$

Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21 Fuentes-Martin, GI, Konig, Selimovic, '20

Conclusions

- The statistical significance of the LFU anomalies is growing: in the $b \rightarrow sll$ system the chance this is a pure statistical fluctuation is marginal...
- <u>If combined</u>, the two sets of anomalies point to non-trivial flavor dynamics around the TeV scale, involving mainly the 3^{rd} family \rightarrow connection to the origin of flavor [multi-scale picture at the origin of flavor hierarchies]
- <u>No contradiction</u> with existing low- & high-energy data, <u>but new non-</u><u>standard effects should emerge soon</u> in both these areas

Very interesting (near-by!) future...

(both on the exp., the pheno, and the model-building point of view)

Other low-energy observables

DESY Physics Colloquium, 1 June 2021

Speculations on UV completions

The **PS**³ set-up:

Bordone, Cornella, Fuentes-Martin, GI, '17

- * Unification of quarks and leptons [natural explanation for U(1)_Y charges]
- * **De-unification** (= *flavor deconstruction*) of the gauge symmetry
- * Breaking to the diagonal SM group occurs via appropriate "link" fields, responsible also for the generation of the hierarchies in the Yukawa couplings.

Speculations on UV completions

