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Overview

When Elie Cartan was developing the theory of differential geometry in the early
20th century, he constructed a natural differential form ω on a Lie group with
values in the Lie algebra and observed it satisfies dω + 1

2
[ω, ω] = 0.

Later this equation was recognized as the criterion that a connection is flat.

Nowadays it plays a role in many different areas of mathematics.

It also appears in theoretical physics.
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Gauge field theory

We consider a gauge field theory. P is the configuration space of fields and their
derivatives. G is a gauge group with Lie algebra g.

Inside P is the shell Σ, the solution space for equations of motion.

We are interested in functionals on Σ which are gauge invariant.

Idea: Consider functionals on P , but cancel the ones that vanish on Σ with
anti-fields.

Would like to choose a gauge to compute things. This is fraught with difficulty.
Faddeev-Popov introduce ghosts to keep the path-integral formalism consistent.

These ideas can be encoded together in the BV-BRST formalism
(Batalin-Vilkovisky; Becchi-Rouet-Stora, Tyutin).
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BRST-BV formalism

Ghosts and anti-fields (and anti-ghosts) form the BV-BRST complex.

We use them to kill things without discarding them.

A = (Λ•g∨Σ ⊗ Λ•P ⊗ Sym• gΣ, s = δ + γ + . . . )

Here s is the BRST symmetry, constructed to satisfy the master equation:
s2 = 0.

If this holds we can divide ker(s) by Im(s) to obtain the cohomology H∗.

It is physically meaningful: The cohomology in degree 0 describes observables.

One can express s = {S ,−} in terms of an anti-bracket with a generalized action
S . The master equation becomes {S , S} = 0.

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 4 / 13



BRST-BV formalism

Ghosts and anti-fields (and anti-ghosts) form the BV-BRST complex.

We use them to kill things without discarding them.

A = (Λ•g∨Σ ⊗ Λ•P ⊗ Sym• gΣ, s = δ + γ + . . . )

Here s is the BRST symmetry, constructed to satisfy the master equation:
s2 = 0.

If this holds we can divide ker(s) by Im(s) to obtain the cohomology H∗.

It is physically meaningful: The cohomology in degree 0 describes observables.

One can express s = {S ,−} in terms of an anti-bracket with a generalized action
S . The master equation becomes {S , S} = 0.

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 4 / 13



BRST-BV formalism

Ghosts and anti-fields (and anti-ghosts) form the BV-BRST complex.

We use them to kill things without discarding them.

A = (Λ•g∨Σ ⊗ Λ•P ⊗ Sym• gΣ, s = δ + γ + . . . )

Here s is the BRST symmetry, constructed to satisfy the master equation:
s2 = 0.

If this holds we can divide ker(s) by Im(s) to obtain the cohomology H∗.

It is physically meaningful: The cohomology in degree 0 describes observables.

One can express s = {S ,−} in terms of an anti-bracket with a generalized action
S . The master equation becomes {S , S} = 0.

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 4 / 13



BRST-BV formalism

Ghosts and anti-fields (and anti-ghosts) form the BV-BRST complex.

We use them to kill things without discarding them.

A = (Λ•g∨Σ ⊗ Λ•P ⊗ Sym• gΣ, s = δ + γ + . . . )

Here s is the BRST symmetry, constructed to satisfy the master equation:
s2 = 0.

If this holds we can divide ker(s) by Im(s) to obtain the cohomology H∗.

It is physically meaningful: The cohomology in degree 0 describes observables.

One can express s = {S ,−} in terms of an anti-bracket with a generalized action
S . The master equation becomes {S , S} = 0.

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 4 / 13



BRST-BV formalism

Ghosts and anti-fields (and anti-ghosts) form the BV-BRST complex.

We use them to kill things without discarding them.

A = (Λ•g∨Σ ⊗ Λ•P ⊗ Sym• gΣ, s = δ + γ + . . . )

Here s is the BRST symmetry, constructed to satisfy the master equation:
s2 = 0.

If this holds we can divide ker(s) by Im(s) to obtain the cohomology H∗.

It is physically meaningful: The cohomology in degree 0 describes observables.

One can express s = {S ,−} in terms of an anti-bracket with a generalized action
S . The master equation becomes {S , S} = 0.

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 4 / 13



BRST-BV formalism

Ghosts and anti-fields (and anti-ghosts) form the BV-BRST complex.

We use them to kill things without discarding them.

A = (Λ•g∨Σ ⊗ Λ•P ⊗ Sym• gΣ, s = δ + γ + . . . )

Here s is the BRST symmetry, constructed to satisfy the master equation:
s2 = 0.

If this holds we can divide ker(s) by Im(s) to obtain the cohomology H∗.

It is physically meaningful: The cohomology in degree 0 describes observables.

One can express s = {S ,−} in terms of an anti-bracket with a generalized action
S . The master equation becomes {S , S} = 0.

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 4 / 13



BRST-BV formalism

Ghosts and anti-fields (and anti-ghosts) form the BV-BRST complex.

We use them to kill things without discarding them.

A = (Λ•g∨Σ ⊗ Λ•P ⊗ Sym• gΣ, s = δ + γ + . . . )

Here s is the BRST symmetry, constructed to satisfy the master equation:
s2 = 0.

If this holds we can divide ker(s) by Im(s) to obtain the cohomology H∗.

It is physically meaningful: The cohomology in degree 0 describes observables.

One can express s = {S ,−} in terms of an anti-bracket with a generalized action
S . The master equation becomes {S , S} = 0.

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 4 / 13



Quantum Master Equation

When we quantize we replace the classical action by a “quantum action”
W = S + ~M1 + ~2M2 . . . .

Also introduce a nilpotent operator ∆, the odd Laplacian and normalise
∆(1) = 0.

Then quantum averages are gauge-independent if the quantum master equation
holds:

i~∆W − 1

2
(W ,W ) = 0

This is the Maurer-Cartan equation.

Why?
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Resolutions

We look at similar ideas in mathematics.

For example, consider functions on a
point x0 ∈ C while keeping all of C in mind. So we express the space Cx0 of
functions at the point x0 as a quotient:

(C∞(C)
(x−x0)·−−−−→ C∞(C)) ' Cx0

In general we replace an object L by a differential graded object P

· · · → Pi−1
d−→ Pi

d−→ Pi+1
d−→ Pi+2 → . . .

which satisfies d2 = 0.

Then we can talk about cohomology H i = ker(d)/ Im(d).
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”. . . utinam intelligere possim rationacinationes pulcherrimas quae e propositione
concisa de quadratum nihilo exaequari fluunt.” (Laudatio for Henri Cartan)

Then we can talk about cohomology H i = ker(d)/ Im(d).
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(P•, d) is a resolution for L if there is a comparison map and L = H0(P) while
H i(P) = 0 for i 6= 0.
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Ideas of homological algebra

One interpretation from topology: dx is the boundary of x , thus x provides the
path or homotopy from dx to 0.

Instead of declaring a field to be zero we give a name and identity to the fact
that it is equivalent to 0 – the antifield.

The condition dx = 0 means something is a closed object (with no boundary), it
means x solves some equation.

The payoff: Construct P so it has better properties (for example a free action),
and then work with P instead of L.

Other homology groups appear when we do things to P . They are meaningful,
measure deformations, obstructions etc.
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Deforming differentials

Take a differential graded object (P , d), for example a chain complex, and
deform the differential.

Let ξ ∈ Hom1(P ,P). Then (P , d + ξ) is a chain complex if (d + ξ)2 = 0.

That is (d2 + ξd + dξ + ξ2) = 0, or

dξ + ξ2 = 0

or equivalently

dξ +
1

2
[ξ, ξ] = 0

So ξ has to be a Maurer-Cartan element.

The Maurer-Cartan equation expresses that our operator has square zero (up to
homology), thus it can be used to perturb homology.
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or equivalently

dξ +
1

2
[ξ, ξ] = 0

So ξ has to be a Maurer-Cartan element.

The Maurer-Cartan equation expresses that our operator has square zero (up to
homology), thus it can be used to perturb homology.

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 8 / 13



Deformation theory

This is quite basic, and the appearance of the Maurer-Cartan equation is
immediate.

It turns out this is only the tip of the iceberg:

Formal deformations of the multiplicative structure of algebras are given by
Maurer-Cartan elements in the shifted Hochschild cochains C ∗HH(A,A)[1].

Formal deformations of complex structures on a manifold are given by
Maurer-Cartan elements in the Kodaira-Spencer complex A0,∗(X , TX )[1].

There is a deep and general framework capturing these and many other
examples, derived deformation theory. Cf. work by Deligne, Drinfeld,
Kontsevich-Soibelman, Lurie . . .
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Twisted modules

Consider deformed differentials in a concrete example.

The de Rham algebra (Ω(X ), d) of differential forms on a manifold X is an
example of a differential graded algebra.

If we take any graded vector space V then (Ω(X )⊗ V , d ⊗ idV ) is a differential
graded Ω(X )-module.

We can consider all Ω(X )-modules of the form (Ω(X )⊗ V , d ⊗ idV +ξ) where ξ
is a Maurer-Cartan element.

These are called twisted modules over Ω(X ). Twisted modules are often a more
refined invariant than the derived category of a differential graded algebra.

One can see that twisted modules over Ω(X ) are the derived analogue of vector
bundles with a flat connection.
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Local systems
Consider a local system of vector spaces on a simplical set (simplicial complex,
topological space).

1

0 2

E1

E0 E2

f12

f02

f01

For each vertex i there is a vector space Ei . For each edge or path ij there is a
map fij : Ei → Ej . For each 2-simplex or (topological) homotopy ijk there is a
(algebraic) homotopy fijk : Ei → Ek [1].

Here f012 witnesses that f02 and f12 ◦ f01 : E0 → E2 agree in cohomology:

df012 − f02 + f12 ◦ f01 = 0

There are higher relations:

dfijklm − fiklm + fijlm − fijkm + fjklm ◦ fij − fklm ◦ fijk + flm ◦ fijkl = 0
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∞-local systems

We remember the differential is a boundary. Indeed the boundary of the simplex
induces a differential on the functions fij ...p. It sends f012 7→ f02.

Combining the algebraic and simplicial differential into one operator δ and
writing f for the collection {fij ...p} we can express all relations jointly as:

δf + f ◦ f = 0

The Maurer-Cartan equation expresses that we keep track of all the boundaries
which ensure that all compositions are compatible up to homology.

We may also view this is arising from resolving not an individual vector space but
the category of chain complexes (H).

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 12 / 13



∞-local systems

We remember the differential is a boundary. Indeed the boundary of the simplex
induces a differential on the functions fij ...p. It sends f012 7→ f02.

Combining the algebraic and simplicial differential into one operator δ and
writing f for the collection {fij ...p} we can express all relations jointly as:

δf + f ◦ f = 0

The Maurer-Cartan equation expresses that we keep track of all the boundaries
which ensure that all compositions are compatible up to homology.

We may also view this is arising from resolving not an individual vector space but
the category of chain complexes (H).

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 12 / 13



∞-local systems

We remember the differential is a boundary. Indeed the boundary of the simplex
induces a differential on the functions fij ...p. It sends f012 7→ f02.

Combining the algebraic and simplicial differential into one operator δ and
writing f for the collection {fij ...p} we can express all relations jointly as:

δf + f ◦ f = 0

The Maurer-Cartan equation expresses that we keep track of all the boundaries
which ensure that all compositions are compatible up to homology.

We may also view this is arising from resolving not an individual vector space but
the category of chain complexes (H).

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 12 / 13



∞-local systems

We remember the differential is a boundary. Indeed the boundary of the simplex
induces a differential on the functions fij ...p. It sends f012 7→ f02.

Combining the algebraic and simplicial differential into one operator δ and
writing f for the collection {fij ...p} we can express all relations jointly as:

δf + f ◦ f = 0

The Maurer-Cartan equation expresses that we keep track of all the boundaries
which ensure that all compositions are compatible up to homology.

We may also view this is arising from resolving not an individual vector space but
the category of chain complexes (H).

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 12 / 13



∞-local systems

We remember the differential is a boundary. Indeed the boundary of the simplex
induces a differential on the functions fij ...p. It sends f012 7→ f02.

Combining the algebraic and simplicial differential into one operator δ and
writing f for the collection {fij ...p} we can express all relations jointly as:

δf + f ◦ f = 0

The Maurer-Cartan equation expresses that we keep track of all the boundaries
which ensure that all compositions are compatible up to homology.

We may also view this is arising from resolving not an individual vector space but
the category of chain complexes (H).

Julian Holstein, Universität Hamburg On the Maurer-Cartan Equation QU Colloquium 5 Nov 2019 12 / 13



Riemann Hilbert

These constructions agree!

Riemann-Hilbert: Flat connections are equivalent to local systems, by taking flat
sections.

Derived Riemann-Hilbert: Derived flat connections are equivalent to ∞-local
systems (Block-Smith, Chuang-H-Lazarev).

Both sides of the equivalence are given by solutions of rather different
Maurer-Cartan equations.

It’s a small fraction of the Maurer-Cartan story. Deformation theory is a much
bigger story. Bar-cobar duality is another important thread. How are they
connected? How does the quantum master equation fit in?

100 years on there is still much to be learnt about the Maurer-Cartan equation.
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