Particle and Astroparticle Physics Colloquium, DESY, June 25-26, 2019

Probing the composite nature of the Higgs boson at the LHC

Aurelio Juste (ICREA/IFAE, Barcelona)

Pursuing Big Questions

Pursuing Big Questions

The LHC and the Energy Frontier

The LHC represents an extremely powerful instrument to search for New Physics (NP):

- Direct searches for new particles in a plethora of kinematic regions and final state signatures.
- Broad program of precise measurements of SM processes and parameters.

DEAR FOLKS... JUST ARRIVED AT TERASCALE VERY WARM HERE. PLAN TO EXPLORE FOR HIGGS TOMORROW.

հվիակիսկիսկիսկիս

ATLAS and CMS Experiments

 Δ

- Central tracking in solenoidal B field
- Electromagnetic and hadronic calorimeters
- Muon detectors
- Excellent performance up to the highest instantaneous luminosities delivered by the LHC!

Outline

- Introduction
- Light overview of Composite Higgs paradigm
- Status and plans for Run 2 searches
 - Fermionic resonances
 - Bosonic resonances
- Future prospects at the LHC and beyond
- Summary and outlook

LHC Run 1

LHC Run 1

LHC Run 1

Explosion of the Higgs Physics Landscape!

Doubly-charged Higgs bosons

Tool for discovery

- Portal to DM (invisible Higgs)
- Portal to hidden sectors
- Portal to BSM physics with H^o in the final state (VH^o, H^oH^o)

Electroweak Symmetry Breaking in the SM

- All measurements to date are consistent with the SM picture of EWSB:
 - Triggered by a fundamental scalar that acquires a vacuum expectation value (v~246 GeV).
 - Particles acquire mass through interaction with scalar field in the ground state.

 10^{-1}

10²

12

10

Particle mass [GeV]

1

- But it's not fully satisfactory:
 - Higgs boson mass is very sensitive to short-distance physics.
 - Lack of dynamical explanation for EWSB.

Why is the Higgs Boson so Light?

All elementary scalars are expected to be ultra-heavy.

• Mass not protected by symmetries like for fermions (chiral symmetry) or vector bosons (gauge symmetry).

 Λ = New physics cutoff

Either New Physics appears at a scale Λ or there has to be a very delicate cancellation ("fine tuning").

If cut-off is at $\Lambda = M_{Pl} = 10^{19} \text{ GeV}$, need: $(125 \text{ GeV})^2 \approx (10^{19} \text{ GeV})^2 - (10^{19} \text{ GeV})^2$

listening to your favorite radio needs the tuned frequency to match that of the radio channel: radio freq. = 59.05871852091501091981287962349857612 kHz tuned freq. = 59.05871852091501091981287962349857987 kHz

Solutions to the Hierarchy Problem

New Physics stabilizes the hierarchy

Supersymmetry: new symmetry that relates scalars to fermions (cancellation of quadratic divergences).

Solutions to the Hierarchy Problem

New Physics stabilizes the hierarchy

Supersymmetry: new symmetry that relates scalars to fermions (cancellation of quadratic divergences).

Compositeness: the Higgs boson is not an elementary particle but a composite object.

 \rightarrow No true hierarchy problem beyond the scale of compositeness.

AdS/CFT correspondence

Warped Extra Dimensions:

generate the gauge hierarchy. Higgs boson naturally light.

Composite Higgs Paradigm

New strong interaction that confines at a scale $\Lambda_c \sim 10$ TeV.

 Inspired by QCD where we observed light scalars without problems of naturalness.

Higgs Boson Couplings

Unravel composite nature of the Higgs boson by measuring its couplings to SM particles!

Composite Higgs QCD P $\Lambda_{\mathbf{c}} \stackrel{\bigstar}{+}^m$ $m_{\psi,
ho}$. π π h ψ, ρ h w W $\mathcal{F}_h(p)$ $\mathcal{F}_{\pi}(p)$ TeV ~ f_{π} $\mathcal{F}_{\pi}(p)$ h, SI Elementary state Composite state Ρ Expect reduced couplings for a composite particle Go as high in energy as possible!

Higgs Boson Couplings

Unravel composite nature of the Higgs boson by measuring its couplings to SM particles!

Composite Higgs QCD Ρ $\Lambda_{\mathbf{c}} \stackrel{\bigstar}{\downarrow}^m$ $m_{\psi,
ho}$. π π ψ, ρ h h w W $\mathcal{F}_h(p)$ $\mathcal{F}_{\pi}(p)$ TeV ~ f_{π} $\mathcal{F}_{\pi}(p)$ h, SIElementary state Composite state Ρ Unfortunately, with the LHC we are limited to ~TeV

Higgs Boson Couplings

Unravel composite nature of the Higgs boson by measuring its couplings to SM particles!

Composite Higgs QCD P $\Lambda_{ ext{c}} \stackrel{ ext{ }}{\downarrow}^m$ $m_{\psi,
ho} \downarrow$ π ψ, ρ π h $\mathcal{F}_{\pi}(p)$ W $\mathcal{F}_h(p)$ TeV ~ f_{π} ATLAS-CONF-2018-031 ¥["] 2.5 ATLAS Preliminary Best fit \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹ -68% CL h, SM $m_{H} = 125.09 \text{ GeV}, |y_{H}| < 2.5$ ---- 95% CL 2 ★ SM 1.5 Expected scale factor for coupling to vector bosons: - Combined - $H \rightarrow \gamma \gamma$ $\kappa_v = \sqrt{1-\xi}, \ \xi \equiv v^2 / f_{\pi}^2$ H→WW 0.5 $-H \rightarrow \tau \tau$ H→bb κ_V>0.95 → f_π>790 GeV @ 95% CL 0.4 0.6 0.8 11 1.2 1.4 1.6 n 0.2 1.8 2 0.95 $\kappa_{\rm V}$

19

Longitudinal Vector Boson Scattering

 In the SM the Higgs boson ensures perturbative unitarity in longitudinal vector boson scattering:

Longitudinal Vector Boson Scattering

 In the SM the Higgs boson ensures perturbative unitarity in longitudinal vector boson scattering:

 Reduced couplings to vector bosons means the Higgs boson only does in part its job.

Composite Bosonic Resonances

• In the SM the Higgs boson ensures perturbative unitarity in longitudinal vector boson scattering:

boson only does in part its job.

٠

Composite bosonic resonances needed to fully unitarize!

2.5

1.5 1 0.5

Composite Bosonic Resonances

 In the SM the Higgs boson ensures perturbative unitarity in longitudinal vector boson scattering:

- Reduced couplings to vector bosons means the Higgs boson only does in part its job.
- Composite bosonic resonances needed to fully unitarize!

π - π elastic scattering

Composite Fermionic Resonances

Partial Compositeness:

- Elementary fermions couple linearly to heavy vectorlike composite states with same quantum numbers.
- Fermions acquire mass through mixing with new vector-like quarks.
 - Large top-quark Yukawa coupling
 → top-quark largely composite.
- Linear couplings violate global symmetry explicitly
 Higgs potential induced.
- A light Higgs boson requires light top partners (expected to be lighter than bosonic resonances).

They regulate the Higgs mass-squared divergence

Vector-like: left and right components transform the same under SU(2)_L
 → can write mass term in Lagrangian

A Broad Program

Indirect searches (precision EW+Higgs+Top)

Direct searches (fermionic resonances)

Direct searches (bosonic resonances)

A Broad Program

Indirect searches (precision EW+Higgs+Top)

Direct searches (fermionic resonances)

Focus of this talk

Direct searches (bosonic resonances)

June 3, 2015: Run 2 Starts!

Direct Searches for New Phenomena

In some cases already exceeded Run 1 sensitivity with <2 fb⁻¹ at 13 TeV!

Standard Model Measurements

Fermionic Resonances

Vector-Like Quarks: Production and Decay

Production:

- Pair production: via QCD, "universal" production mode (just depends on m_Q).
 - ➔ Focus of Run 1 searches
- Single production: via EW interaction, depends on coupling strength, but potentially important at high m_Q.

Decay: $Q \rightarrow Wq$, Zq, Hq, all with sizable BR

with 3rd generation quarks.

Pair Production Strategy

- Very rich phenomenology, depending on VLQ mass and quantum numbers.
- Goal is to probe full BR plane in as model independent possible way.
 - → Searches specialized on particular heavy quark decay modes, but also able to probe part of the plane.
 - → Multiple searches required, ideally overlapping on the plane.

Run 1 Summary

(*) Not a combination. Only most restrictive individual bounds shown.

Run 1 excludes T-quark (B-quark) masses below ~720 (740) GeV for any combination of BRs

Plan for Run 2 Analyses

Plan for Run 2 Analyses

٠

•

0000

 \overline{m}

٠

Plan for Run 2 Analyses

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
 - Large increase in production cross section at high masses
 - Optimize strategy at high mass

SM resonances are often boosted!

Many well understood tools for tagging of hadronically decaying W, Z, Higgs and top!

Pair Production: $T\overline{T} \rightarrow Ht+X$

H

 W^- . H. Z

- Search targeting high BR(T \rightarrow Ht), with H \rightarrow bb, but designed as broad-band search.
- Strategy:

Events

Data / Bkg

- Consider lepton+jets and high- E_{τ}^{miss} +jets channels.
- Top and Higgs tagging via mass cut on large-R jets.
- Categorize events according to b-tag, top-tag and Higgs-tag multiplicities (a total of 34 regions).
- Signal-depleted regions used to constrain • in-situ bkg uncert. through likelihood fit to data.

Pair Production: $B\overline{B}$, $X_{5/3}\overline{X}_{5/3} \rightarrow WtWt$

- Searches targeting $B \rightarrow W^-t$ or $X_{5/3} \rightarrow W^+t$.
- Consider SS dilepton+jets and lepton+jets signatures, both with comparable sensitivity.
- Strategy (lepton+jets):
 - Presel: 1 lepton, high E_T^{miss} , \geq 4 jets/ \geq 1 b-tags.
 - Multiple event categories depending on the presence of boosted top or hadronic W bosons.
 - Analyze B-quark mass or BDT output (ATLAS), or min[M(I,b)] (CMS) spectra.

Pair Production Summary: Vector-Like Top

Pair Production Summary: Vector-Like Top

1.37 (1.32)

T in (T, B) doublet

1.28 (1.24)

mass limit (GeV)

quark

95% CL observed

1300

1200

1100

1000

900

Pair Production Summary: Vector-Like Bottom

Pair Production Summary: Vector-Like Bottom

1.14 (1.13)

B in (B, Y) doublet

0.94 (0.92)

Single Production Strategy

- Many channels (w/ and w/o leptons) to be exploited.
- Powerful handles against backgrounds:
 - Forward jet tagging
 - Boosted techniques
 - VLQ mass reconstruction

- Signal/background interference
- Helicity propagation in decay

Single Production: $T(\rightarrow Zt)+X$

Strategy:

- Presel: $Z(\rightarrow II)$ +jets, ≥ 1 b-tags, small $\Delta R(II)$.
- Top-tagging and W-tagging on R=0.8 anti- k_T jets.
- 10 event categories depending on lepton flavor, top kinematics (fully-merged/semi- merged/resolved) and presence of forward jets.
- Use heavy quark mass built from reconstructed Z-boson and top candidates.

Main background: Z+jets. Estimated using dedicated control regions.
 PLB 781 (2018) 574

Single Production: $B(\rightarrow Hb)+X$

Strategy:

- 2 isolated photons, compatible with H→γγ candidate.
 ≥1 b-tagged jet, ≥1 forward jet
- Non-resonant background shape from data m_{γγ} sidebands. Normalization from fit to m_{γγb} spectrum.
 SM Higgs background from MC.

Single Production: $B(\rightarrow Hb)+X$

a

Ζ

В

Strategy:

- 2 isolated photons, compatible with H→γγ candidate.
 ≥1 b-tagged jet, ≥1 forward jet
- Non-resonant background shape from data $m_{\gamma\gamma}$ sidebands. Normalization from fit to $m_{\gamma\gamma b}$ spectrum.

SM Higgs background from MC.

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
 - Combination of pair and single production
 - Increased use of simplified models
 - Take into account effect of extra resonances in more realistic benchmarks

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard decays BR(Q→Wq)+BR(Q→Zq)+BR(Q→Hq)<1 Example: Q→q+η, η CP-odd scalar

- If exotic BRs dominant, signal may be picked by existing searches.
- For comparable BRs, it becomes difficult as signal split into many signatures.

But also opportunity for new exciting searches: e.g. $T\overline{T} \rightarrow 6$ -top!

51

Bosonic Resonances

Bosonic resonances

- Also expect composite spin-1 resonances (ρ=G', Z', W'), which decay into SM particles.
 - Expect the strongest couplings to heavy SM states (t, W, Z, h).
- Main production mechanisms: Drell-Yan and/or vector-boson fusion

- Preferred signatures:
 - Diboson resonances
 - 3rd generation quark resonances (tt, bb, tb)
 - Dilepton/dijet resonances
- In non-minimal CH models can have additional pNGBs besides the SM Higgs → extra heavy scalars!

Many final state signatures explored!

- Considering both resolved and boosted topologies.
- Most sensitive signatures at high mass: use highest BR decay W/Z decay modes. —
- Also probe VH with $H \rightarrow b\bar{b}$, $\tau\tau$.

M(JJ)=4.4 TeV Run: 338846 Event: 2998836394 2017-10-01 21:17:47 UTC ATLAS

m_{J1J2}~4.4 TeV

p_{T,J2}=2.3 TeV, m_{J2}=62.5 GeV

p_{T,J1}=2.1 TeV, m_{J1}=89.5 GeV

$\rho \rightarrow VV'$, VH (V=W,Z) Searches

Reaching cross sections down to ~1-10 fb for $M_{V'}$ >2 TeV!

ρ⁰→tī Searches

ρ⁰→tī Searches

Associated ttρ (and bbρ) Production

If only top quark has a high degree of compositeness:

Also possible:

BSM 4-top Production

4-top production in Composite Higgs models:

Other BSM scenarios that can lead to 4-top(+X) production:

4-top Production in the SM

4-top Production: Experimental Signatures

• Very busy final state with high jet and b-jet multiplicity.

- Most promising signatures:
 - 1I+jets and 2I opposite-charge+jets
 - 2I same-charge+jets and ≥3I+jets (SS/ML)
- SM 4-top background has no narrow resonance but in general kinematic reconstruction very challenging (high combinatorial background and missing momentum from multiple neutrinos).
- Dedicated Run 2 searches for SM 4-top production underway.

Summary of SM 4-top Results

 $\sigma_{t\bar{t}t\bar{t}} = 12.6^{+5.8}_{-5.2}$ fb SS/ML (**137 fb⁻¹**) $\sigma_{t\bar{t}t\bar{t}} = 28.5^{+12}_{-11}$ fb Combination (36 fb⁻¹) b

Theory:
$$\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5}$$
 f

Significance ATLAS 36 fb⁻¹ CMS 36 fb⁻¹ CMS 139 fb⁻¹ obs. (exp.) [σ] 2.6 (2.7) 3.0 (0.8) 1.6 (1.0) SS/ML 1L/0S 1.0 (0.6) 0.0 (0.4) Combination 2.8 (1.0) 1.4(1.1)

- Evidence for SM 4-top production should be possible with full Run 2 dataset! ٠
- Interesting sensitivity to BSM 4-top production! Dedicated searches starting... ٠

Future Prospects

LHC Run 2

- More sophisticated analysis techniques.
- Combinations!

- We are here...

	arXiv:1905.03764	
	kappa-3 scenario	HL-LHC
Indirect searches	$\kappa_W \ (\%, \leq 1)$	-1.7
	$\kappa_Z \ (\%, \le 1)$	-1.3
(precision EVV+Higgs+Top)	$\kappa_g (\%)$	±2.2
	$\kappa_{\gamma}(\%)$	± 1.7
	$\kappa_{Z\gamma}(\%)$	$\pm 10.$
	$K_c(\%)$	
	\mathbf{K}_t (%)	± 2.0 ± 2.6
	$\kappa_b(\%)$	± 2.0 ± 4.4
	κ_{μ} (%) κ_{τ} (%)	± 1.6
	BR _{inv} (<%, 95% CL)	1.9
	BR _{unt} (<%, 95% CL)	i 4.1
	Reach few % precision on Higgs couplings	
Direct searches	Direct search	es
(fermionic resonances)	(bosonic resonar	ices)

Beyond LHC

Beyond LHC

Beyond LHC

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Recent LHC Run 2 results only use up to 36 fb⁻¹ of data at √s=13 TeV.
 Significant improvements expected with the full Run 2 dataset (139 fb⁻¹):
 - Almost x4 increased statistics.
 - More sophisticated analysis techniques.
 - Combinations!

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Recent LHC Run 2 results only use up to 36 fb⁻¹ of data at √s=13 TeV.
 Significant improvements expected with the full Run 2 dataset (139 fb⁻¹):
 - Almost x4 increased statistics.
 - More sophisticated analysis techniques.
 - Combinations!

Will we see first hints of a composite Higgs?

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Recent LHC Run 2 results only use up to 36 fb⁻¹ of data at √s=13 TeV.
 Significant improvements expected with the full Run 2 dataset (139 fb⁻¹):
 - Almost x4 increased statistics.
 - More sophisticated analysis techniques.
 - Combinations!

Are we already seeing them in the B-physics anomalies?

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Recent LHC Run 2 results only use up to 36 fb⁻¹ of data at √s=13 TeV.
 Significant improvements expected with the full Run 2 dataset (139 fb⁻¹):
 - Almost x4 increased statistics.
 - More sophisticated analysis techniques.
 - Combinations!

We will know soon!

Are we already seeing them in the B-physics anomalies?

Will we see first hints of a composite Higgs?

- Broad program of studies at the LHC to test the Composite Higgs paradigm:
 - Precision measurements of Higgs boson couplings.
 - Direct searches for new heavy resonances from the composite sector.
- Recent LHC Run 2 results only use up to 36 fb⁻¹ of data at √s=13 TeV.
 Significant improvements expected with the full Run 2 dataset (139 fb⁻¹):
 - Almost x4 increased statistics.
 - More sophisticated analysis techniques.
 - Combinations!

We will know soon!

 Great prospects for gaining further insights at upcoming LHC runs and (especially) at future colliders!

Are we already seeing them in the B-physics anomalies?

Will we see first hints of a composite Higgs?

