

Vector Boson Scattering: a new toolkit to probe the standard model and beyond

SPONSORED BY THE

Federal Ministry of Education and Research Joany Manjarrés

May 21, 2019

$$\begin{aligned} \mathcal{J} &= -\frac{1}{4} F_{nv} F^{nv} \\ &+ i F \mathcal{D} \mathcal{F} \\ &+ \mathcal{F}_{ij} \mathcal{F}_{j} \mathcal{P} + h.c \\ &+ |D_{n} \mathcal{P}|^{2} - \bigvee(\mathcal{P}) \end{aligned}$$

The Higgs boson was found 7 years ago!

ightarrow no significant deviation from the SM found in its properties

$$\begin{aligned} \mathcal{J} &= -\frac{1}{4} F_{n\nu} F^{n\nu} \\ &+ i F \mathcal{D} \mathcal{F} \\ &+ \mathcal{F}_{ij} \mathcal{F}_{j} \mathcal{P} + h. \\ &+ |D_{n} \mathcal{P}|^{2} - V(\mathcal{P}) \end{aligned}$$

Particle content

$$\begin{aligned} \mathcal{J} &= -\frac{1}{4} F_{nv} F^{nv} \\ &+ i F \mathcal{D} \mathcal{F} \\ &+ \mathcal{F} \mathcal{D} \mathcal{F} \\ &+ \mathcal{F}_{ij} \mathcal{F}_{j} \mathcal{O} + h.c \\ &+ \left| D_{n} \mathcal{O} \right|^{2} - V(\mathcal{O}) \end{aligned}$$

Particle content

Is the SM complete?

The Higgs boson was found 7 years ago!

 \rightarrow no significant deviation from the SM found in its properties

- Particle content
- Particle interactions

Particle content

- Particle interactions
 - $\checkmark \gamma/Z \rightarrow \ell \ell, W \rightarrow \ell \nu \text{ most frequent and very} \\ \text{well understood}$
 - ✓ WW V (V = W, Z, γ) precisely measured at LEP and the LHC
 - \checkmark H → WW,ZZ, γγ and H → ττ recently observed at LHC
 - Higgs self couplings not yet seen

Particle content

- Particle interactions
 - \checkmark γ/Z → ℓℓ, W → ℓν most frequent and very well understood
 - ✓ WW V (V = W, Z, γ) precisely measured at LEP and the LHC
 - \checkmark H → WW,ZZ, γγ and H → ττ recently observed at LHC
 - Higgs self couplings not yet seen
 - WW VV was limited by experimental data

• Example: Cross-section for longitudinal $W_L^+W_L^- \rightarrow W_L^+W_L^-$ scattering

• Example: Cross-section for longitudinal $W_L^+W_L^- \rightarrow W_L^+W_L^-$ scattering

• Example: Cross-section for longitudinal $W_L^+W_L^- \rightarrow W_L^+W_L^-$ scattering

• Example: Cross-section for longitudinal $W_L+W_L \rightarrow W_L+W_L$ scattering

• Looking for new physics?

[†]Small-radius (large-radius) jets are denoted by the letter j (J).

• Yet no sign of new physics with **direct searches** @LHC

New physics in bumps and tails

Effective Field Theory (EFT)

• Deviations are parametrized by higher order operators from SM fields

 EFT are model independent and self consistent framework for parametrizing deviations from the SM

*Only a selection of the available mass limits on new states or phenomen † Small-radius (large-radius) jets are denoted by the letter j (J).

Vector Boson Scattering at the LHC

Protons in LHC serve as source of vector boson beams.

Vector Boson Scattering at the LHC

Protons in LHC serve as source of vector boson beams.

 $O(\alpha^{6}_{W})$ process with following diagrams at LO:

Vector Boson Scattering at the LHC

Protons in LHC serve as source of vector boson beams.

 $O(\alpha^{6}_{W})$ process with following diagrams at LO:

Vector Boson Scattering topology

Vector Boson Scattering topology

VBS at the LHC has a typical final state topology

- Two hadronic jets in forward and backward regions with very high energy (tagging jets)
- Two bosons produced ~back-to-back (lepton centrality ζ)

100

 10^{-1}

10-2

10-3

 10^{-4}

10-5

2000

4000

m_{ii} [GeV]

da/dm_{jj} [fb/GeV]

 Hadronic activity suppressed between the two jets due to absence of color flow between interacting partons → not used jet because of MC miss modeling

(a)

signal

6000

800

0.3

0.2

0.1

0.0

2

dσ/d|Δη|

1/a

Vector Boson Scattering topology

Experimental results

Experimental results

Datasets

- ATLAS: 8 TeV (20.2 fb-1) and 13 TeV (36.1 fb-1)
- CMS: 8 TeV (19.7 fb-1) and 13 TeV (35.9 fb-1)

Channels studied

Best EW/QCD	final state		CMS	ATLAS EXPERIMENT		
	W±W±	l±vl±v jj	PRL 120 (2018) 081801	CONF-2018-030	First	
Largest	W±Z	l±vII jj	arXiv:1901.04060	arXiv:1812.09740	observation !!	
Section	Wγ	l±vγ jj	JHEP 06 (2017) 106			
	Zγ	llγ jj	PLB 770 (2017) 380	JHEP07(2017)107		
	ZZ	IIII jj	PLB 774 (2017) 682			
WV l±vJ jj ZV llJ jj		l±vJ jj			Best EFT	
		llJ jj	PAS-SIVIP-18-006 arXIV:1905.07714		limits	

ATLAS experimental results

$W^{\pm}Z \rightarrow \ell \nu \ell \ell \text{ [arXiv:1812.09740]}$

 $W^{\pm}W^{\pm} \rightarrow \ell \nu \ell \nu$ [ATLAS-CONF-2018-030]

ATLAS experimental results

W[±]Z analysis

- Small signal contribution (~30%)
 - Exploit discriminant variables, BDT
- Need to keep under control the backgrounds!
 - Data Control Regions

Control regions definition

Control regions definition

W[±]Z analysis

- Small signal contribution (~30%)
 - Multivariate analysis, discriminant variables
- Need to keep under control the backgrounds!
 - Data Control Regions

Multivariate analysis

- Boosted Decision Tree used in signal region to distinguish between WZjj-EW and backgrounds
- 15 variables that have a characteristic signature.
 - In order of importance:
 - 1. lyz ye,wl
 - 2. ζ_{lep}
 - 3. R_{pT} har
 - 4. Jets multiplicity ($p_T > 25 \text{ GeV}$)
 - 5. Δφ_{jj}
- Trained on simulation events, to separate WZjj-EW from backgrounds
- Description of BDT score controlled in QCD-CR
 - good agreement observed with data

• Data • $W^{\pm}Z$ -EW • $W^{\pm}Z$ -QCD • ZZ • Misid. leptons • tt+V• tZj and VVV • ff'/ff' Tot. unc.

Full set of BDT variables

$$\begin{split} m_{jj}, \ N_{jets}, \ p_{T}{}^{j1}, p_{T}{}^{j2}, \ \eta^{j1}, \ \Delta\eta_{jj}, \ \Delta\varphi_{jj} \\ Iy_{I,W} - y_{Z}I, \ p_{T}{}^{W}, \ p_{T}{}^{W}, \ \eta^{W}, \ m_{T}{}^{WZ} \\ \Delta R(j1, \ Z), \ R_{p}{}^{hard}, \ \zeta_{lep} \end{split}$$

 $\begin{aligned} \zeta_{lep} &= min(\Delta \eta_{-}, \Delta \eta_{+}) \\ \Delta \eta_{-} &= min(\eta_{l}^{W}, \eta_{l1}^{Z}, \eta_{l2}^{Z}) - min(\eta_{j1}, \eta_{j2}) \\ \Delta \eta_{+} &= max(\eta_{j1}, \eta_{j2}) - max(\eta_{l}^{W}, \eta_{l1}^{Z}, \eta_{l2}^{Z}) \end{aligned}$

Signal extraction

- Simultaneous template fit of BDT score in signal region and 3 different control regions
 - Signal and background normalization extracted from data
 - Shape fit → Consider uncertainties affecting shape and normalization

Signal region

Control regions

Signal extraction

- Simultaneous template fit Mjj and Δηjj
 - separate by lepton flavors
- Signal and background normalization extracted from data
 - Shape fit → Consider uncertainties affecting shape and normalization

QCD Control region

2D Signal region

Systematics uncertainties

	Source	Uncertainty [%]
	WZjj-EW theory modelling	4.8
	WZjj-QCD theory modelling	5.2
	$W \ge jj$ - EW and $W \ge jj$ - QCD interference	1.9
	Jets	6.6
	Pile-up	2.2
Jet reconstruction	Electrons	1.4
and calibration	Muons	0.4
	b-tagging	0.1
	MC statistics	1.9
	Misid. lepton background EXPERIMEN	0.9
	Other backgrounds	0.8
	Luminosity	2.1
	Total Systematics	10.7

Source of systematic uncertainty	Relative systematic uncertainty [%]	
	$\sigma_{\mathrm{WZ}jj}$	EW WZ Significance
Jet energy scale	+9.8/-9.2	7.5
Jet energy resolution	+1.1/-1.9	< 0.1
QCD WZ modeling	-	0.9
Other background theory	+2.5/-2.2	0.2
Nonprompt normalization	+2.1/-2.4	1.1 CMS
Nonprompt stat.	+6.1/-5.8	6.2
Lepton energy scale and eff.	+3.5/-2.7	< 0.1
b-tagging	+1.7/-1.9	< 0.1
Luminosity	+3.1/-3.4	< 0.1

Systematics uncertainties

	Source	Uncertainty [%]
Theory uncertainties*	WZjj-EW theory modelling	4.8
QCD scale: vary renormalisation and factorization	WZjj-QCD theory modelling	5.2
scale by 0.5 and 2	WZjj-EW and $WZjj$ -QCD interference	1.9
 20% to 30% effect in QCD, 	Jets	6.6
● 5% for EW	Pile-up	2.2
PDF and as: standard PDF4LHC description:	Electrons	1.4
 Small effect (1-2%) 	Muons	0.4
	b-tagging	0.1
 Signal modeling (including parton shower) 	MC statistics	1.9
 shape difference between generators 	Misid. lepton background EXPERIMENT	0.9
(Up to 14% effect)	Other backgrounds	0.8
• WZ OCD background modeling	Luminosity	2.1
 shape difference between generators 	Total Systematics	10.7
 5-20% effect 		

Source of systematic uncertainty	Relative systematic uncertainty [%]		
	$\sigma_{\mathrm{WZ}jj}$	EW WZ Significance	
Jet energy scale	+9.8/-9.2	7.5	
Jet energy resolution	+1.1/-1.9	< 0.1	
QCD WZ modeling	-	0.9	
Other background theory	+2.5/-2.2	0.2	
Nonprompt normalization	+2.1/-2.4	1.1 CMS	
Nonprompt stat.	+6.1/-5.8	6.2	
Lepton energy scale and eff.	+3.5/-2.7	< 0.1	
b-tagging	+1.7/-1.9	< 0.1	
Luminosity	+3.1/-3.4	< 0.1	

* EW corrections to VBS WZ (~-19%) were not available by the time of the publication and are not included

Systematics uncertainties

	Source	Uncertainty $[\%]$
	WZjj-EW theory modelling	4.8
QCD/EWK Interference	WZjj-QCD theory modelling	5.2
Part of the measured signal	WZjj-EW and $WZjj$ -QCD interference	1.9
 Included as shape uncertainty on signal 	Jets	6.6
Size of interference: +10% of EW WZjj	Pile-up	2.2
	Electrons	1.4
	Muons	0.4
	b-tagging	0.1
Othor backgrounde	MC statistics	1.9
Normalization uncortaintics applied on	Misid. lepton background EXPERIMEN	т 0.9
non-dominant background	Other backgrounds	0.8
 Large uncertainty in Misid. Leptons 	Luminosity	2.1
background (~40%)	Total Systematics	10.7

Source of systematic uncertainty	Relative systematic uncertainty [%]		
	$\sigma_{\mathrm{WZ}jj}$	EW WZ Significance	
Jet energy scale	+9.8/-9.2	7.5	
Jet energy resolution	+1.1/-1.9	< 0.1	
QCD WZ modeling	-	0.9	
Other background theory	+2.5/-2.2	0.2	
Nonprompt normalization	+2.1/-2.4	1.1 CMS/	
Nonprompt stat.	+6.1/-5.8	6.2	
Lepton energy scale and eff.	+3.5/-2.7	< 0.1	
b-tagging	+1.7/-1.9	< 0.1	
Luminosity	+3.1/-3.4	< 0.1	

WZjj-EWK: Fiducial Cross-Section

First observation of WZjj EWK process!

Observed (Expected with Sherpa) Significance is **5.3** (**3.2 o**)

Measured WZjj EWK+QCD fiducial cross section (including b-jets looser PS)

```
\sigma_{WZjj}^{\text{fid}} = 2.91^{+0.53}_{-0.49} \,(\text{stat}) \,\, {}^{+0.41}_{-0.34} \,(\text{syst}) = 2.91^{+0.67}_{-0.60} \,\, \text{fb}
```

MADGRAPH5 AMC@NLO at LO+PYTHIA $3.27^{+0.39}_{-0.32}(\text{scale}) \pm 0.15 (\text{PDF})$

W±W± analysis

- Small signal contribution (~30%)
 - Exploit discriminant variables, BDT
- Need to keep under control the backgrounds!
 - Data Control Regions

Backgrounds and control regions

Backgrounds and control regions

Backgrounds and control regions

Non-prompt

- Shapes and normalization are taken from data
 - Fake factor calculated in a di-jet control region
 - Uncertainties 40-90% for the different channels μμ, μe and ee
- Control region region used to constrain

WZ

- Shape taken from simulation
 - Modeling theory uncertainties applied (PDF, scale, shower)
- Normalization taken from data control region

e/γ conversions

- Charge miss-ID rates calculated from simulation and applied to data
 - Uncertainties 10% in forward region, 20% in central region

WWjj QCD, other prompts

- Taken from simulation
 - Theory uncertainties vary from 20% to 30%

Analysis strategy

Signal extraction: used 6 binned M_{jj} distributions, separated by :

- lepton flavours: ee, eμ+μe, μμ
- charge: + + and -

Perform simultaneous template fit in signal region and other observables in different control regions

Interference with strong production and NLO EW

Sherpa v2.2.2

corrections are not included in theoretical predictions

Powheg+Pythia8

CMS Result [PRL 120 (2018) 081801] Observed (expected with Madgraph) significance is 5.5σ (5.7 σ)

ATLAS Result [ATLAS-CONF-2018-030]

Observed (expected with Sherpa)

significance is 6.9σ (4.9 σ)

2

49

Statistical uncertainty pQCD scale uncertainty

Data

Looking for new physics

Looking for new physics $WZ \rightarrow |v||$

Looking for new physics $WZ \rightarrow |v||$

Looking for new physics $WZ_{jj} \rightarrow V_{jj} / U_{jj} / v_{jj}$

Looking for new physics $WZ_{jj} \rightarrow V_{jj} / U_{jj} / v_{jj}$

Looking for new physics $WZ_{jj} \rightarrow VJ_{jj} / IJ_{jj}$

Looking for new physics $WZ_{jj} \rightarrow VJ_{jj} / IJ_{jj}$

VBS in Context of full SM

A new chapter of the SM now accessible !!

Observation the EWK production of vector boson pairs

- ✓ WZ and same charge WW with a significances higher than 5σ
 - ✓ Huge efforts to extract a small signal over a big background
- More channels to come

Mesure for the first time a process that include QGC at tree level

- Test Electroweak Symmetry breaking and Higgs properties
 - e.g. Longitudinal component $V_LV_L \rightarrow V_LV_L$ no measurement yet (150fb⁻¹, HL-LHC ?)
- \circ Look for new physics using the EFT approach
 - More data can bring us surprises
- Precise measurements will need :
 - Much more data (Full Run-2, HL-LHC!)
 - Precise theory predictions for signal and background (Shape fits and multivariate analysis heavily rely on MC descriptions)
 - Precise Jets