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Higgs Boson Discovery in 2012 
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2012 2018

Discovery to Precision…
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What is the nature of dark matter 
& dark energy?

Why are neutrinos massive?

Why is there more matter than anti-
matter?
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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Is the electroweak vacuum stable?

What are the origins of the LHCb 
flavour anomaly?

How can the Higgs boson be 
light when the mass 
receives large quantum 
corrections?What are the details of cosmic 

inflation?
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…but no new physics so far
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Build better tools to 
identify known particles
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Heavy Resonance Tagging

• Hadronically decaying top/Higgs/W/Z

• Contained in one (large-R) jet

• How to distinguish from light quark/gluon jets 
(and from each other)

• For new physics searches (and SM studies)

• Mass 
Calculate using a grooming algorithm  
(eg mMDT/softdrop or pruning) 

• Centers of hard radiation 
n-subjettiness or energy correlation 
functions

• Flavour 
b tagging of large-R jets or subjets

• Combinations

Towards an Understanding of the Correlations in Jet Substructure  
D Adams et al (BOOST 2013 Participants), Eur.Phys.J. C75
Top Tagging, T Plehn, M Spannowksy, J.Phys. G39 (2012) 083001  
Boosted Top Tagging Method Overview, GK, Proc. Top2017 !7



Top Quark

+

• Measure particle energies in calorimeter
• Reconstruct jet from individual 

measurements
• Image preprocessing

• center, rotate, mirror, pixelate, trim, 
normalise

=

1 image

(jet images by C Daza)
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Top Quark

+

=
(jet images by C Daza)

• Measure particle energies in calorimeter
• Reconstruct jet from individual 

measurements
• Image preprocessing

• center, rotate, mirror, pixelate, trim, 
normalise

10 image average
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Top Quark

+

=
(jet images by C Daza)

• Measure particle energies in calorimeter
• Reconstruct jet from individual 

measurements
• Image preprocessing

• center, rotate, mirror, pixelate, trim, 
normalise

100 image average
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Top Quark

+

=
(jet images by C Daza)

• Measure particle energies in calorimeter
• Reconstruct jet from individual 

measurements
• Image preprocessing

• center, rotate, mirror, pixelate, trim, 
normalise

1000 image average
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Top Quark

+

=
(jet images by C Daza)

• Measure particle energies in calorimeter
• Reconstruct jet from individual 

measurements
• Image preprocessing

• center, rotate, mirror, pixelate, trim, 
normalise

10000 image average
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=
Top Quark  
 Jet

QCD Jet

=

• Binary classification task
• Fully supervised learning 

(using simulation)
• 40x40 Pixels, ET

• Perfectly suited for deep learning algorithms
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Deep Learning
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• 2015 Image Classification:

• K. He et al (Microsoft Research), Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 
1502.01852

• 2016 Go:

• Alpha Go (D. Silver et al, Mastering the game of Go with deep neural networks and tree search, Nature 529, pp484–489 and D. 
Silver et al Mastering the game of Go without human knowledge, Nature 550, pp354–359)

• 2016 Speech recognition:

• W. Xiong et al (Microsoft Research) Achieving Human Parity in Conversational Speech Recognition, 1610.05256

• 2017 Poker (heads-up no-limits Texas Hold’em):

• N Brown and T Sandholm, Superhuman AI for heads-up  
no-limit poker: Libratus beats top professionals,  
Science 359, Issue 6374, pp418-424

• 2018 Translation (Chinese-English)

• H H Awadalla et al (Microsoft AI & Research)  
Achieving Human Parity on Automatic Chinese  
to English News Translation

• 20?? Particle Physics

• to be seen

Humans vs Machines
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• 14M labelled images

• 20k categories

• http://image-net.org

ImageNet
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A Very Simple Network
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y = f(f(x1)w1 + f(x2)w2)

f(x) = ⇥(x) · x

• Backpropagation + Gradient descent

• Pass input (x1, x2) to ANN

• Calculate output (y) and difference to true value (  )  
This is the loss function L

• Find gradient of loss function with respect to weights 

• Use gradient to find new weights

L(y, ŷ) = (y � ŷ)2

w0
i = wi + ↵ · @L

@wi

ŷ

Regression loss function:

towardsdatascience.com



Problem: Classification
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Particles

Event Topologies

Distinguish a pair of classes (binary) or several (multi-class).

Galaxies

Cat vs Dog



Classification
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• Minimizing cross entropy: For fixed p - minimise 
difference (KL-divergence) between q and p

H(p, q) = �
X

pi ln qi = H(p) +DKL(p||q)

• Minimizing cross entropy: Equivalent to 
maximising the likelihood

L =
X

Samples

�ys ln ŷs � (1� ys) ln(1� ŷs)

True class  
image is cat: 0
image is dog: 1

Predicted class  
DNN output between 0 and 1

1

N
ln⇧iq

Npi
i =

X

i

pi ln qi = �H(p, q)



Complexity

2 weights

300 weights

25 million  
weights
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Convolution
Train these weights

=

Efficient use of weights and natural encoding 
of translational symmetry.

 21



Convolution network

• How to build a convolution 
network?

• Multiple parallel and successive 
convolutions

• Pooling

• Simple network in the end
9

Figure 4. Architecture [29] of our default networks for fully pre-processed images, defined in Tab. I.

classification is a parameter that allows to link the signal e�ciency ✏S with the mis-tagging rate of
background events ✏B.

In Sec. III we will use this trained network to test the performance in terms of ROC curves,
correlating the signal e�ciency and the mis-tagging rate.

Before we move to the performance study, we can get a feeling for what is happening inside
the trained ConvNet by looking at the output of the di↵erent layers in the case of fully pre-
processed images. In Fig. 5 we show the di↵erence of the averaged output for 100 signal and 100
background images. For each of those two categories, we require a classifier output of at least 0.8.
Each row illustrates the output of a convolutional layer. Signal-like red areas are typical for jet
images originating from top decays; blue areas are typical for backgrounds. The first layer seems
to consistently capture a well-separated second subjet, and some kernels of the later layers seem
to capture the third signal subjet in the right half-plane. However, one should keep in mind that
there is no one-to-one correspondence between the location in feature maps of later layers and the
pixels in the input image.

Figure 5. Averaged signal minus background for our default network and full pre-processing. The rows
correspond to ConvNet layers one to four. After two rows MaxPooling reduces the number of pixels by
roughly a factor of four. The columns indicate the feature maps one to eight. Red areas indicate signal-like
regions, blue areas indicate background-like regions.
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Comparison Studies
• That’s A LOT of different approaches 

• How do they compare?

• Many aspects - let’s start with a very simple problem

• Top Jets vs QCD jets

• Only use four-vectors

• Ignore detector effects, pile-up and, uncertainties

• Available at:

• http://tinyurl.com/yxq8q3uk

http://tinyurl.com/yxq8q3uk


• Comparison study of  
different top tagging 
algorithms on common  
sample.

• Pythia + Delphes, AntiKt (R=0.8) 
top jets with pT in [550,650] GeV 
vs QCD

• 1.2M training events, 400k each  
for validation and testing 

• Up to 200 constituent 4-vectors 
per jet

Dataset



arXiv: 1902.09914



Overview





Images

!29

1611.05431

Pulling Out All the Tops with Computer Vision and Deep 
Learning, S Macaluso, D Shih, 1803.00107



Basis

N-Subjettiness:

tion of observables sensitive to two-prong structure measured on the jets. In Fig. 3, we plot

the mass of the signal and background jets as defined by the simulation and jet finding from

earlier. Applying a mass cut around the Z boson peak, we then measure the two-prong jet

observables. In Fig. 4, we show the distributions of the N -subjettiness and energy correlation

function ratios ⌧
(�)
2,1 , D

(�)
2 , and N

(�)
2 . As was extensively studied in the original works, these

plots make clear the separation power that these observables enable. When we compare these

observables to the discrimination power of the M -body phase space observables, we relax the

hard mass cut, and let the machine learn the optimal mass and observable cuts dynamically.

In Fig. 1, we plot the signal jet (Z boson) e�ciency versus the background jet (QCD)

rejection rate for the collection of observables that minimally span M -body phase space, along

with the jet mass. The observables that are passed to the neural network to specify M -body

phase space are, explicitly:

2-body: ⌧
(1)
1 , ⌧

(2)
1

3-body: ⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(1)
2 , ⌧

(2)
2

4-body: ⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(1)
3 , ⌧

(2)
3

5-body: ⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(0.5)
3 , ⌧

(1)
3 , ⌧

(2)
3 , ⌧

(1)
4 , ⌧

(2)
4

6-body: ⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(0.5)
3 , ⌧

(1)
3 , ⌧

(2)
3 , ⌧

(0.5)
4 , ⌧

(1)
4 , ⌧

(2)
4 , ⌧

(1)
5 , ⌧

(2)
5

Significant gains in discrimination power are observed by including observables sensitive to

higher-body phase space, until enough observables to specify at least 4-body phase space are

included. Including observables sensitive to 5- and 6-body phase space does not improve

discrimination power, and therefore suggests that there is only an extremely limited amount

of information in a jet useful for discrimination.

To see what information is necessary to accomplish the maximal discrimination power,

in Fig. 5 we plot the signal e�ciency versus background rejection rate for the collection of

N -subjettiness and energy correlation function ratios plotted earlier. For comparison, we

also include the corresponding curves for the jet mass, jet mass plus 3-body phase space

observables, and jet mass plus 4-body phase space observables. The discrimination power

of all of these observables are comparable, and this illustrates that they appear to capture

essentially all of the information contained in the 3-body phase space observables. Then, to

match the maximum discrimination power (as represented by the jet mass plus 4-body phase

space curve), one just needs to augment the measurement of jet mass and an N -subjettiness

or energy correlation function ratio with observables that are sensitive to 4-body phase space.

We leave the construction of the optimal 4-body phase space observables for this purpose to

future work.

As a cross check that our minimal basis of N -subjettiness observables listed above does

capture the maximal amount of information useful for discrimination, in Fig. 6, we compare

our minimal basis to an overcomplete basis of observables. Here, we measure the mass and the

following collection of N -subjettiness observables on the jet:
n

⌧
(0.25)
1 , ⌧

(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(4)
1 , ⌧

(0.25)
2 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(4)
2 , ⌧

(0.25)
3 , ⌧

(0.5)
3 , ⌧

(1)
3 , ⌧

(2)
3 , ⌧

(4)
3 , (3.2)

⌧
(0.25)
4 , ⌧

(0.5)
4 , ⌧

(1)
4 , ⌧

(2)
4 , ⌧

(4)
4

o
.

– 10 –

Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

and azimuth between particle i and axis K in the jet. There are numerous possible choices for

the N axes in the jet; in our numerical implementation, we choose to define them according

– 3 –

z

1 � z

✓

particle 1

particle 2

(a)

particle 1

particle 2

particle 3

z1

z2

1 � z1 � z2

✓12

✓23

✓13

(b)

Figure 2: Illustration of the momentum fraction and pairwise angle variables that describe

2-body (right) and 3-body (left) phase space.

to the exclusive kT algorithm [29, 30] with standard E-scheme recombination [31]. Note that

⌧
(�)
N = 0 for a jet with N or fewer particles in it.

To identify structure in the jet, we need to measure an appropriate number of di↵erent

N -subjettiness observables. This requires an organizing principle to ensure that the basis of

observables is complete and minimal. Our approach to ensuring this is to identify the set

of N -subjettiness observables that can completely specify the coordinates of M -body phase

space. Ensuring that the set is minimal is then straightforward: as M -body phase space is

3M � 4 dimensional, we only measure 3M � 4 N -subjettiness observables. A jet also has an

overall energy scale. To ensure sensitivity to this energy scale, we will also measure the jet

mass, mJ .

We will describe how to do this for low dimensional phase space, and then generalize to

arbitrary M -body phase space. We will work in the limit where the jet is narrow and so all

particles in the jet can be considered as relatively collinear. This simplifies the expressions

for the values of the N -subjettiness observables to illustrate their content, but does not a↵ect

their ability to span the phase space variables.

• 2-Body Phase Space: 2-body phase space is 3 · 2 � 4 = 2 dimensional. For a jet with

two particles, the phase space can be completely specified by the transverse momentum

fraction z of one of the particles:

z =
pT1

pTJ
, 1 � z =

pT2

pTJ
, (2.2)

and the splitting angle ✓ between the particles. This configuration is shown in Fig. 2a. To

uniquely identify the z and ✓ of this jet, we can measure two 1-subjettiness observables,

defined by di↵erent angular exponents ↵ 6= �. For concreteness, we will measure ⌧
(1)
1 and

⌧
(2)
1 .

To determine the measured values of the 1-subjettiness observables, we need to determine

the angle between the individual particles of the jet and the axis. Because E-scheme

recombination conserves momentum, the angles between the particles 1 and 2 and the

– 4 –

How Much Information is in a Jet?
K Datta, A Larkoski, 1704.08249
Reports of My Demise Are Greatly Exaggerated: 
N-subjettiness Taggers Take On Jet Images,
L Moore et al 1807.04769  
Energy flow polynomials: A complete linear basis for jet 
substructure,  
PT Komiske, ER Metodiev, J Thaler, 1712.07124

Energy Flow Polynomials:

1000 graphs used in linear model



Deep-learning Top Taggers & No End to QCD
A Butter, GK, T Plehn, M Russell
1707.08966

Lorentz Layer
and 
Lorentz Boost 
Network 

Lorentz Boost Networks: Autonomous Physics-Inspired Feature 
Engineering
M. Erdmann, E. Geiser, Y. Rath, and M. Rieger
1812.09722



 
Deep Sets

!32

Energy Flow Networks: Deep Sets for Particle Jets, PT 
Komiske, EM Metodiev, J Thaler, 1810.05165



N-Vectors

Fully 
connected

1D 
Convolution Trees Graphs

Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Graph neural networks
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FIG. 1. QCD-motivated recursive jet embedding for classifi-
cation. For each individual jet, the embedding hjet

1 (tj) is com-
puted recursively from the root node down to the outer nodes
of the binary tree tj . The resulting embedding is chained to
a subsequent classifier, as illustrated in the top part of the
figure. The topology of the network in the bottom part is
distinct for each jet and is determined by a sequential recom-
bination jet algorithm (e.g., kt clustering).

B. Full events

We now embed entire events e of variable size by feed-
ing the embeddings of their individual jets to an event-
level sequence-based recurrent neural network.
As an illustrative example, we consider here a gated re-

current unit [21] (GRU) operating on the pT ordered se-
quence of pairs (v(tj),h

jet
1 (tj)), for j = 1, . . . ,M , where

v(tj) is the unprocessed 4-momentum of the jet tj and

hjet
1 (tj) is its embedding. The final output hevent

M
(e) (see

Appendix B for details) of the GRU is chained to a subse-
quent classifier to solve an event-level classification task.
Again, all parameters (i.e., of the inner jet embedding
function, of the GRU, and of the classifier) are learned
jointly using backpropagation through structure [9] to
minimize the loss Levent. Figure 2 provides a schematic
of the full classification model. In summary, combining
two levels of recurrence provides a QCD-motivated event-
level embedding that e↵ectively operates at the hadron-
level for all the particles in the event.

In addition and for the purpose of comparison, we
also consider the simpler baselines where i) only the 4-
momenta v(tj) of the jets are given as input to the GRU,
without augmentation with their embeddings, and ii) the
4-momenta vi of the constituents of the event are all di-
rectly given as input to the GRU, without grouping them
into jets or providing the jet embeddings.

IV. DATA, PREPROCESSING AND
EXPERIMENTAL SETUP

In order to focus attention on the impact of the
network architectures and the projection of input 4-
momenta into images, we consider the same boosted W
tagging example as used in Refs. [1, 2, 4, 6]. The signal
(y = 1) corresponds to a hadronically decaying W boson
with 200 < pT < 500 GeV, while the background (y = 0)
corresponds to a QCD jet with the same range of pT .
We are grateful to the authors of Ref. [6] for shar-

ing the data used in their studies. We obtained both
the full-event records from their PYTHIA benchmark sam-
ples, including both the particle-level data and the tow-
ers from the DELPHES detector simulation. In addition,
we obtained the fully processed jet images of 25⇥25 pix-
els, which include the initial R = 1 anti-kt jet clustering
and subsequent trimming, translation, pixelisation, rota-
tion, reflection, cropping, and normalization preprocess-
ing stages detailed in Ref. [2, 6].
Our training data was collected by sampling from the

original data a total of 100,000 signal and background jets
with equal prior. The testing data was assembled sim-
ilarly by sampling 100,000 signal and background jets,
without overlap with the training data. For direct com-
parison with Ref. [6], performance is evaluated at test
time within the restricted window of 250 < pT < 300
and 50  m  110, where the signal and background jets
are re-weighted to produce flat pT distributions. Results
are reported in terms of the area under the ROC curve
(ROC AUC) and of background rejection (i.e., 1/FPR) at
50% signal e�ciency (R✏=50%). Average scores reported
include uncertainty estimates that come from training 30
models with distinct initial random seeds. About 2% of
the models had technical problems during training (e.g.,
due to numerical errors), so we applied a simple algo-
rithm to ensure robustness: we discarded models whose
R✏=50% was outside of 3 standard deviations of the mean,
where the mean and standard deviation were estimated
excluding the five best and worst performing models.
For our jet-level experiments we consider as input to

the classifiers the 4-momenta vi from both the particle-
level data and the DELPHES towers. We also compare the
performance with and without the projection of those
4-momenta into images. While the image data already
included the full pre-processing steps, when considering
particle-level and tower inputs we performed the initial
R = 1 anti-kt jet clustering to identify the constituents of
the highest pT jet t1 of each event, and then performed

Jet Constituents for Deep Neural Network Based Top 
Quark Tagging, J Pearkes et al, 1704.02124
QCD-Aware Recursive Neural Networks for Jet Physics, G 
Louppe et al, 1702.00748  
ParticleNet: Jet Tagging via Particle Clouds, H Qu, L 
Gouskos, 1902.08570

 



SciPost Physics Submission

Figure 6: Pairwise distributions of classifier outputs, each in the range 0 ... 1 from pure
QCD to pure top.

entropy loss. We train for up to 50 epochs, but terminate if there is no improvement in
the validation loss for two consecutive epochs, so a typical training ends after 5 epochs.
The training data is provided by individual tagger output on the previous test sample
and split intro three subsets: GoaT-training (160k events), GoaT-testing (160k events)
and GoaT-validation (80k events). Training/testing is repeated ten times and for each
repetition the events are randomly re-shu✏ed between the three di↵erent subsets. In
Tab. 1 we see that this combination of algorithms improves the best individual tagger by
more than 10% in the background rejection. We consider this number a realistic estimate
of the kind of improvement we can still expect for deep-learning top quark identification.

In spite of the fact that our study gives some definite answers concerning deep learning
for simple jet classification at the LHC, a few questions remain open: first, we use jets
in a relatively narrow and specific pT -slice. Future e↵orts could explore softer jets, where
the decay products are not necessarily inside one fat jet; higher pT , where detector reso-
lution e↵ects become crucial; and wider pT windows, where stability of taggers becomes
relevant. The samples also use a simple detector simulation and do not contain e↵ects
from underlying event and pile-up.

Second, our analysis essentially only includes calorimeter information as input. Addi-

15

Rediscovered Ensembling!



Transfer Learning
• There exist very powerful architectures for image classification

• InceptionResNet V2 weights available (55M weights, 572 layers)

• Trained on 1000 classes of “real” photographs

• Why not just apply it to jet images?

• Preprocessing

Image class “ice cream” identifies QCD jets
Transfer learning strong classifiers

(plots by Lisa Benato and Jennifer Thompson)!35



Systematic Uncertainties

 36

• Simulate systematic differences between 
training MC and collision data

• Test network response under 

• rescaling of 4-vector inputs  
(mimic jet energy scale) 

• adding Pile-Up

• Test mitigation with data augmentation/
adversarial training

Plot by Sven Bollweg (BSc thesis), work with Heidelberg (Plehn),
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Data Augmentation
• Test network response under global rescaling of all 4-vector inputs (simimilar to jet 

energy scale)

• Re-train network using shifted samples as well.

• So the network sees multiple (shifted) copies of the event = data augmentation

• Trade off performance and stability

• Now looking into multiple  
simultaenous uncertainties

• resolution

• pile up

• lost particles

• …

• Can adversarial training help 
further?

 37
Plot by Sven Bollweg

Impact of subject uncertainty



Bayesian Networks

 38

 
Weight Uncertainty in Neural Networks

C Blundell et al,  ICML Proc’s 2015

• So far discussed handling 
uncertainties on the inputs

• How can we with training data 
not fully covering the phase 
space?

• Sampling over Gaussian 
distribution for weights
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Plehn - Aspen 2019  
Bollweg, Haussmann, GK, 

Luchmann, Pehn, Thompson: 
Upcomimg

• learn classification output and uncertainty

• (60 ± 30)% top is very different from (60 ± 1)% top

• tagger calibration part of the network training

• for instance: effect of MC statistics 

Bayesian 
Cont’d
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Bollweg, Haussmann, GK, 

Luchmann, Pehn, Thompson: 
Upcomimg

• First look at impact of Jet Energy Scale uncertainty

• Only rescale leading subset

Preview



Look for unknown 
signatures

 41



Can we look for new physics, 
without knowing what to look for?

Can we avoid systematic 
uncertainties in searches?

 42



Autoencoder

• Self-supervised learning

• Latent space/bottleneck with compressed representation

• Dimension reduction

• Denoising

f(x) g(f(x))

L = (ŷ � g(f(x)))2

kvfrans
deeplearningbook.org !43

http://deeplearningbook.org


Autoencoder for Physics

• Can we find new physics without 
knowing what to look for?

• Train on pure QCD light quark/gluon 
jets and apply to top tagging

• Top quarks/ new physics identified as 
anomaly

QCD or What?
T Heimel, GK, T Plehn, JM Thompson, 1808.08979
Searching for New Physics with Deep Autoencoders
M Farina, Y Nakai, D Shih, 1808.08992 !44



Combined Setup

AutoencoderInput Output

Xij eXij

Adversary

fM

LAuto =
X

Pixels ij

⇣
Xij � eXij

⌘

LAdv = CCE
⇣
M, fM(Xij � eXij)

⌘

L = LAuto � �LAdv

• Autoencoder alone will also learn mass distribution

• Counteract with adversary:

 45



Mass Sculpting

• Tune mass dependency with Lagrange multiplier:

!46



Signal contamination

• Procedure works also when signal  
is present in training data

• We now have a versatile  
tool to search for new physics 
(anomalies) in a purely data 
driven and unsupervised way

• Apply to LHC collision data! 

• Potential trigger!

!47



Variational Autoencoder

f(x) g(f(x))

kvfrans  
!48

• We want to sample from latent space

• Split into mean and standard deviation

• Add penalty term (Kullback-Leibler divergence)  
so mean/std are close to unit Gaussian

towardsdatascience.com

http://towardsdatascience.com


Concrete

towardsdatascience.com !49

http://towardsdatascience.com


Variational 
Autoencoder

kvfrans  
!50

Reconstruction Loss Only KL Loss Only Combined Loss

towardsdatascience.com

L = (ŷ � g(f(x)))2

http://towardsdatascience.com


 
Latent Constraints: Learning to Generate Conditionally 
from Unconditional Generative Models, J Engel, M 
Hoffman, A Roberts, 1711.05772

!51



!52

Variational Autoencoders for New Physics Mining at 
the Large Hadron Collider
O. Cerri et al, 1811.10276

Extend to event tagging
• Variational auto encoder

• Train on SM event cocktail

• Test sensitivity to different BSM 
models

• Opportunity for future trigger?



Alternative: CWoLa

Weakly Supervised Classification in High Energy Physics
LM Dery, B Nachman, F Rubbo, A Schwartzman, 1702.00414  
Learning to Classify from Impure Samples
PT Komiske, EM Metodiev, B Nachman, MD Schwartz, 1801.10158  
Classification without labels: Learning from mixed samples in high energy 
physics, EM Metodiev, B Nachman, J Thaler, 1708.02949  53
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 2. The AUC for the LLP and CWoLa methods as a function of the signal fraction f1, for
training sizes Ntrain of (a) 100 events, (b) 1k events, and (c) 10k events. Here, the complementary
signal fraction is f2 = 1� f1. By construction, the AUC for full supervision is independent of f1. The
horizontal dashed line indicates the fully-supervised AUC with infinite training statistics. For Ntrain

su�ciently large and f1 su�cient far from 0.5, all three methods converge to the optimal case.

on the number of training events and the signal fraction f1. The full supervision does not

depend on the signal composition of M1 and M2 as it is trained directly on labeled signal and

background examples. As expected, the performance is poor when the number of training

– 8 –

Distinguishing mixed samples is 
equivalent to signal/background 
classification!
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –



Alternative: CWola Hunting

 54

Anomaly Detection for Resonant New Physics with 
Machine Learning

JH Collins, K Howe, B Nachman
1805.02664

• Assume signal is resonant in one variable

• Define signal region and sidebands

• Train classifier and look for excess



Spectrum of MC Reliance

!55

Fully Supervised 
Learning

Dependence on Simulation
Assumes a classifier trained 

on MC will be correct on data 
as well

Weak  
Supervision

Assume simulation is good. Do not 
depend on specific model  

(but still limited by which models 
are in the mix)

CWoLa
Fully Supervision,

Mixed signals Autoencoder

Assume MC gets the 
fractions of different classes 

right on average

Assume interpolation between 
phases spaces in data.

Assume that we can tune 
the adversarial setup such 
that an anomaly based on 

data is credible.



• Autoencoding is an exciting new tool in our box

• What else can we do?

• Better understand what’s going on in the latent space?

• Event level?

• Other things than searches?

• …

!56

What else?
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LHC Olympics 2020

https://indico.cern.ch/event/809820/page/16782-
lhcolympics2020

https://indico.cern.ch/event/809820/page/16782-lhcolympics2020
https://indico.cern.ch/event/809820/page/16782-lhcolympics2020
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LHC Olympics 2020 Dataset

Get the data here:
https://zenodo.org/record/2629073#.XKyG0-szbh9

• Challenge to find new physics in simulated events

• Whatever approach you like - BUT we will not tell what the signal is

• Warm up phase: now until ~1.1.2020

• 1M QCD events + Signal (labelled) available, single jet 1.3 TeV trigger

• Use to develop methods to find new physics. 

• Challenge Phase: ~1.1.2017 - ~15.1.2017:

• Find new physics (yes/no, mass, x-sec) in the dataset

• No labels provided

• At ML4Jets (15.1.-17.1.2020):

• Identify winners, discuss strategies and write-up

https://zenodo.org/record/2629073#.XKyG0-szbh9


Conclusions

• Deep learning and its applications to physics is a lively and exciting 
research area

• Images are a powerful tool to represent physics/detector/other 
information (although they are not perfect)

• Potential for new physics searches from:

• Better reconstruction of known particles

• Detection techniques for long-lived objects

• New model-independent searches

 59

Thank you!


