LHC Fixed Targets for physics

Massimiliano Ferro-Luzzi/ m.fl@cern.ch

CERN, Geneva, CH

18.12.2018

IFL DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

- Introduction: context, physics beyond colliders at CERN, LHCb ...
- Physics case(s): briefly
 - understanding \bar{p} flux in cosmic rays
 - measuring magnetic/electric dipole moments of decaying charged particles
 - studying charm production in hot dense matter
- Solid targets in LHC
- Gas targets in LHC
- Summary and outlook

Physics Beyond Colliders

cern.ch/pbc

Physics Beyond Colliders is an exploratory study almed at exploiting the full scientific potential of CERN's accelerator complex and its scientific infrastructure through projects complementary to the LHC, HL-LHC and other possible future colliders. These projects would target fundamental physics questions that are similar in spirit to those addressed by highenergy colliders, but that require different types of beams and experiments. The mandate of the study team may be found here.

The kick-off workshop held in September 2016 identified a number of areas of interest. Working groups have been set-up to pursue studies in these areas. See <u>organization</u> for a detailed breakdown of the current structure. The Physics Beyond Colliders study remains open to further ideas for new projects.

Should you wish to receive general announcements and occassional updates, please subscribe to the e-group PBC-info here,

Physics Beyond Colliders is an exploratory study almed at exploiting the full scientific potential of CERN's accelerator complex and its scientific infrastructure through projects complementary to the LHC, HL-LHC and other possible future colliders. These projects would target fundamental physics questions that are similar in spirit to those addressed by highenergy colliders, but that require different types of beams and experiments. The mandate of the study team may be found here.

The kick-off workshop held in September 2016 identified a number of areas of interest. Working groups have been set-up to pursue studies in these areas. See <u>organization</u> for a detailed breakdown of the current structure. The Physics Beyond Colliders study remains open to further ideas for new projects.

Should you wish to receive general announcements and occassional updates, please subscribe to the e-group PBC-info here,

cern.ch/pbc

CERN's Accelerator Complex

(R)

CERN's Accelerator Complex CMS P6 dump RF P4 momentum cleaning **P3** P7 betatron LHC North Area 2008 (27 km) cleaning ALICE LHCb TT20 TT40 TT41 SPS 1976 (7 km) TIS T12 TT10 AWAKE ATLAS HiRadMat 2011 TT60 AD 1999 (182 m) TT2 2016 (31 m) BOOSTER ISOLDE 4 East Area PS n-ToF 1959 (628 m) /H CTF3 LINAC 2 neutrons LEIR LINAC 3 lons 2005 (78 m) p (proton) ▶ p (antiproton) electron ------ proton/antiproton conversion lion neutrons

A fixed target experiment ?

L DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

No, it is

A fixed target experiment ?

L DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ● ● ● ●

A fixed target experiment ?

5 of 52

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• Acceptance: from about +2 to +5 in pseudorapidity.

DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

5 of 52

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Acceptance: from about +2 to +5 in pseudorapidity.
- And "SMOG": gas target inside the beam-VELO (Vertex Locator) vacuum

- Acceptance: from about +2 to +5 in pseudorapidity.
- And "SMOG": gas target inside the beam-VELO (Vertex Locator) vacuum

Physics case(s)

Astroparticle physics: in need of cross section measurements

- Antiproton flux measured in space
- Models: uncertainties due to bkg production of \bar{p} from interstellar medium (ISM)
 - a good deal due to He

Other interesting measurements for models of cosmic rays through the ISM:

- sparse data for \bar{p} production in pp; predictions mostly based on SPS data, limited to $\sqrt{s_{NN}} < 29$ GeV. Accuracy of extrapolations to higher $\sqrt{s_{NN}}$ are problematic
- little data on production of anti-hyperons, which are thought to constitute 20-30% of total \bar{p} production;
- no direct data on \bar{n} production at relevant energies. Usual assumption of equal \bar{p} and \bar{n} production. (NA49 data: hints for a isospin violation? [11])
- \bar{p} production in *p*-H and *p*-D (constraint on \bar{n} production ?)
- production of π^+ , K^+ (positron flux)
- production of high energy γ (bkg to γ astronomy)
- light anti-nuclei $(\bar{d}, \, {}^{3,4}\bar{He})$, etc...

Most of these measurements can be carried out with small integrated luminosities, of order $\rm nb^{-1}.$

- ... or for modelling cosmic ray showers.
 - Interpretation of UHE showers is presently limited by uncertainties on the modelling of hadronic particle production
 - LHC FT configuration is complementary to LHC beam-beam collisions and offers wider choice of collision systems, including light nuclei
 - ► interactions in air can be modeled by interpolating currently available SMOG samples (*p*-He, *p*-Ne and *p*-Ar),
 - ► N and O targets could perhaps also become possible
 - charm production, bkg from UHE showers to the high energy neutrino flux (IceCube)

and QCD per se ...

- Nucleon structure, trans-momentum dependent PDFs
- phase transition between hadronic matter and QGP

Physics case(s)

Magnetic dipole moments of baryons and other charged particles

FIG. 1. (a) Plan view of the incident proton beam and spectrometer system. The horizontal scale (z) correctly illustrates the length of the apparatus, the vertical scale (x) is schematic only. (b) Elevation view of the channeling apparatus (not to scale). The arrows illustrate the spin precession in the crystals. Shaded areas depict the Σ^+ decay cone. The scintillation counters A and DF are part of the trigger and are described in the text.

E761 measured (1992) MDM of Σ^+ (in $\to p\pi^0)$ using a bent channeling crystal

Principle of polarization precession described in [1]

figure from [5]

figure from [2]

◆□> ◆□> ◆注> ◆注> ─注

bent crystal channeling works

"Textbook" example from D. Mirarchi's thesis [?]

<ロト <回ト < 臣ト < 臣ト 三臣

It was proposed to measure MDMs with crystals at the LHC [3], [5] And later also to measure the EDM of baryons [6] and the MDM of au [8]

11 of 5

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Fixed-target physics with different solid targets

The method of beam splitting of beam halo from the core has also been proposed to perform fixed-target physics (no need of a second crystal).

(Extracting a beam to an external target has also been mentioned, but is prohibitively expensive)

A better (long-term ?) alternative: find a dedicated area for this experiment (a collimation area ?).

Minimal setup: W+crys2, vtx detector, small aperture magnet, trker, absorber.

SY/Zeuthen seminar Hamburg/Berlin 18.12.2018

13 of 52

Challenges of 2-crystal setup at LHC IP8:

- affordable flux of protons on W target (life time, background, heat loads)
- disposal of non-(hard-)interacting protons
- prove that one can make a crystal with at least 12 mrad bending angle and sizable channeling efficiency
- implementation and operation of target and crsytal-2 in front of LHCb
 - must be in beam vacuum, movable, safe, etc
- operational scenarios (run in parallel versus dedicated beam time)

DQC

э.

figure from [7]

Distribution of angle θ_y (in bending plane, relative to entrance axis) versus momentum for Λ_c^+ baryons produced in 7 TeV proton beam collisions on protons at rest using Pythia

MFL DESY/Zeuthen seminar Hamburg/Berlin 18.12.2

<ロ> <四> <ヨ> <ヨ> 三日)

ho(z) = density of gas atoms along the beam path zAt $T = 293 \ K$, $p = 10^{-7} \text{ mbar means } \rho = 2.5 \cdot 10^9 \text{ Molec/cm}^3$

$$\begin{split} N &= \text{number of beam particles passing} \\ \Theta &= \int \rho(z) \, dz = \text{``target thickness'' (areal density)} \\ \mu &= \sigma_{\text{phys}} \cdot N \cdot \Theta = \text{probability of an interaction per pass} \\ R &= f_{\text{rev}} \cdot \mu = \sigma_{\text{phys}} \cdot L = \text{rate of interactions is} \\ L &= f_{\text{rev}} \cdot N \cdot \Theta = \text{luminosity} \\ \tau^{-1} &= \sigma_{\text{phys}} \, f_{\text{rev}} \, \Theta = \text{life time} \end{split}$$

Beam-gas imaging at LHCb: the genesis of SMOG

Х

CERN

Beam-gas imaging: LHCb

Beam-gas imaging: key detector is the VELO

- silicon strips
- 8 mm from the beams
- vertical planes
- excellent vertex resolution
- good acceptance in θ and z
- also for forward-boosted beam-gas interactions!

a $\boldsymbol{p} + \boldsymbol{p}$ interaction

FL DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

21 of 52

▲ロ ▶ ▲ □ ▶ ▲ 三 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Beam-gas imaging: crucial is the vertex resolution

Beam size at LHCb during luminosity calibration runs is typically 0.10 mm. Resolution for p + p interactions:

LHCb actually performed a first beam-gas imaging luminosity calibration with just residual gas ... and then wanted more of it!

figure from [12]

・ロト ・四ト ・ヨト ・ヨト

э

Beam-gas imaging: System for Measuring the Overlap with Gas

Vacuum too good :-) Stop the VELO ion pumps (beam vacuum) Inject tiny amount of gas (Ne, He, Ar) in

VELO beam vacuum

Increase pressure from $10^{-9}\;$ to $10^{-7}\;{\rm mbar}$

 $\overline{\mathbb{Q}}$

L DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

・ロト ・回ト ・ヨト ・ヨト

900

[12]

3

Beam-gas imaging: first smogging in the LHC, 2012

Adding a little bit of gas (here Neon)

Beam-gas rate increases. As expected.

<ロ> (四) (四) (日) (日) (日)

Beam-gas imaging: [12, 13]

Measure and fit the vertex distributions of each of the two colliding beams and of the collision region, then calculate the overlap integral

$$\Omega = 2c \int \rho_1(\mathbf{r}, t) \,\rho_2(\mathbf{r}, t) dr^3 \, dt$$

which gives the luminosity (bunch populations are measured separately)

$$L = f_{\rm rev} N_1 \, N_2 \, \Omega$$

Final L precision < 2%

NB: you don't need to know the gas density!

Physics Beyond Colliders

Beam-gas imaging: ghost charge

Bunch population normalisation at LHC:

- crucial for direct luminosity determination
- Direct Current Current Transformer measures precisely the total beam population
- Fast Bunch Current Transformer measures relative bunch charge, but not if charge is below a certain threshold.
- \Rightarrow How to normalize the N_1 and N_2 ?
- \Rightarrow How much charge in non-filled bunch slots $\ref{eq:how}$ (ghost charge)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Left: filled-slot rates are suppressed from plot Right: ghost population over total beam population vs time

27 of 52

Different colors/markers are just different time periods (with an artificial offset for clarity, except for the blue)

28 of 52

ロトメロトメヨトメヨトニヨーのの

SMOG: switch Neon to Helium...

6.5 TeV beam on gas target

figures from [9]

fit the PID distribution of neg charged tracks and get the relative contribution of π^- , K^- and \bar{p}

result of the fit projected into the variable $\arg(DLLpK+iDLLp\pi)$.

figure from [9]

differential cross section for production of \bar{p} from *p*-He interactions (vs the \bar{p} momentum) in three different transverse momentum bins (p_T)

But ? ... gas density not known how was the cross section normalized ?

(a)

э

see later

figures from [10]

FL DESY/Zeuthen seminar Hamburg/Berlin 18.12.201

900

э

Summary of FT physics samples collected by LHCb

At $2 \cdot 10^{-1}$ mbar, 10^{-2} pots $\Leftrightarrow 5$ nb per meter of gas (actual pressure and data taking efficiency vary among samples) (PbNe VALUE TO BE UPDATED...)

э

◆□ → ◆□ → ◆三 → ◆三 → ● ● ●

SMOG shortcomings

How to do better than SMOG ?

・ロト ・回 ・ ・ ヨト ・ ヨー ・ つへの

Storage cell principle: see e.g. in [15] flux Q in center of cell (in mbar ℓ/s) gas of molecular mass M. Tube conductance (in ℓ/s):

$$C = 3.81 \sqrt{\frac{T}{M}} \frac{D^3}{L+1.33D}$$

for a tube at temperature T (in K), length/diameter L/D (in cm). Total cell conductance:

> $C_{\text{cell}} = 2C(\frac{L}{2}, D) + C(\ell, d)$ polarized case

Peak density value

$$\rho_{\rm max} = \frac{Q}{C_{\rm cell}} \, 2.5 \cdot 10^{16} \frac{\rm molec}{\rm mbar~cm^3} \label{eq:rhoman}$$

L DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

typical wish list (LHC FT luminosities with unpol. gases) (not approved!) Assuming: 3 yrs, $\mu < 0.4$,

System	$\sqrt{s_{NN}}$	avg pressure	L	Rate	Time	\mathcal{L}
	(GeV)	(mbar)	$(cm^{-2}s^{-1})$	(MHz)	(s)	(pb^{-1})
pH_2	115	$4 \cdot 10^{-5}$	$6 \cdot 10^{31}$	4.6	$2.5\cdot 10^6$	150
pD_2	115	$2 \cdot 10^{-5}$	$3 \cdot 10^{31}$	4.3	$0.3 \cdot 10^6$	9
pAr	115	$1.2 \cdot 10^{-5}$	$1.8\cdot10^{31}$	11	$2.5 \cdot 10^6$	45
pKr	115	$0.8 \cdot 10^{-5}$	$1.2\cdot10^{31}$	12	$2.5\cdot 10^6$	30
pXe	115	$0.6 \cdot 10^{-5}$	$0.9\cdot 10^{31}$	12	$2.5 \cdot 10^6$	22
pHe	115	$2 \cdot 10^{-5}$	$3 \cdot 10^{31}$	3.5	$3.3 \cdot 10^3$	0.1
pNe	115	$2 \cdot 10^{-5}$	$3\cdot 10^{31}$	12	$3.3\cdot10^3$	0.1
pN_2	115	$1 \cdot 10^{-5}$	$1.5 \cdot 10^{31}$	9.0	$3.3 \cdot 10^3$	0.1
pO_2	115	$1 \cdot 10^{-5}$	$1.5\cdot 10^{31}$	10	$3.3\cdot 10^3$	0.1
		5			5	
PbAr	72	$8 \cdot 10^{-5}$	$1 \cdot 10^{29}$	0.3	$6 \cdot 10^{3}$	0.060
PbH_2	72	$8 \cdot 10^{-5}$	$1 \cdot 10^{29}$	0.2	$1 \cdot 10^5$	0.010
pAr	72	$1.2\cdot10^{-5}$	$1.8\cdot 10^{31}$	11	$3 \cdot 10^5$	5
<u> </u>						

See also in [17]

Challenges for storage cell targets in LHC:

- presence of cryogenic (superconducting) magnets near interaction points
 - heat load due to interaction products (quench limit!)
 - gas accumulation by cryosorption (SEY!)
- presence of Non-Evaporable Getter (NEG) coatings in all the warm beam pipe sections
 - coating saturation by gas load (except noble gases)
- wake fields and impedance constraints on the storage cell implementation
- aperture constraints on the storage cell implementation
 - larger aperture required at injection energy
- for the polarized gas: nuclear polarization preservation
 - suitable SC coating ?
 - depolarization mechanisms from beam beam RF fields
- how to measure the density (luminosity)?
- how to measure the polarization ?

Non-getterable gases (He, Ne, Ar, Kr, Xe):

- gas is not pumped by NEG coating, diffuses to warm-to-cold transitions
- cryosorption, impacts on local Secondary Electron Yield
- He, Ne, Ar: deposits can be "cured" by partial warm up of cold areas (migration to cold bore)
- Kr, Xe: same trick does not work, too high temperature is required

Getterable gases (H_2 , D_2 , O_2 , N_2):

- Pumping capacity is eaten up by the injected gas
- SEY remains probably OK (to be checked)
- hydrogen is a special case: diffuses in bulk, NEG coating becomes brittle (peel off!)
 - \blacktriangleright embrittlement limit for ${\sf H}_2$ in commercial NEG: about 40 mbar ℓ/g^-1
 - Safe margin for TiZrV films (LHC): 4 mbar ℓ/g^{-1}
 - Nominal thickness: $2 \ \mu m$
 - Mass density: 5.5 g/cm³
 - ▶ NEG film mass per metre of beam pipe (D=5 cm): 1.7 g/m

 \Rightarrow dedicated pumping schemes / injection scenarios for diff. gas species

Luminosity (gas density) measurement

Use a calibrated pressure gauge and molflow simulations ? (can reach 10%?) Or look for a known reference cross section ... Example: p-He

beam proton p

 $p\text{-}\alpha$ interactions tough no usable ref reaction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Luminosity (gas density) measurement

Use a calibrated pressure gauge and molflow simulations ? (can reach 10%?) Or look for a known reference cross section ... Example: p-He

 $p\text{-}\alpha$ interactions tough no usable ref reaction

beam proton
$$p$$

 e^-

elastic p-e scattering Measure n_e Assume $n_{\alpha} = 2 n_e$

$e+p \rightarrow e+p$ cross section

Assuming some acceptance and efficiency for the elastic e^- events, one guestimate that with a $L\sim 2\cdot 10^{28}~{\rm Hz/cm^2}$ the rate is about 1 Hz. Such a luminosity can be achieved with a helium pressure of about $2\cdot 10^{-7}$ mbar and 35 proton bunches of $10^{11}_{-22}~p$.

A $\mathit{p}\text{-He}$ inelastic (hadronic) event in LHCb

A p-He elastic electron event in LHCb

<ロ> <同> <同> <目> <目> <同> <目> <日> <同> <日> <日> <日> <日> <日> <日 < 0 <

figure from [9]

"LHCb est mort. Vive LHCb!"

DESY/Zeuthen seminar Hamburg/Berlin 18.12.20

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$\mathsf{SMOG2}=\mathsf{SMOG}$ upgrade, introducing a storage cell in the VELO

. DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

$\mathsf{SMOG2}=\mathsf{SMOG}$ upgrade, introducing a storage cell in the VELO

L DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

• LHCb already developed a substantial Fixed Target program at the LHC using SMOG (He, Ne, Ar)

- LHCb already developed a substantial Fixed Target program at the LHC using SMOG (He, Ne, Ar)
- Several proposals have been made to perform a broad and diverse Fixed Target program at the LHC
 - ► Astroparticle physics, ion physics, magnetic and electric dipole moments

- LHCb already developed a substantial Fixed Target program at the LHC using SMOG (He, Ne, Ar)
- Several proposals have been made to perform a broad and diverse Fixed Target program at the LHC
 - ► Astroparticle physics, ion physics, magnetic and electric dipole moments
- Feasability and impact on LHC is being studied within the PBC FT working group
 - Bent channeling crystals, solid targets
 - Unpolarized/polarized gas targets, storage cells
- Several implementation scnearios are being looked at (not only in LHCb)

- LHCb already developed a substantial Fixed Target program at the LHC using SMOG (He, Ne, Ar)
- Several proposals have been made to perform a broad and diverse Fixed Target program at the LHC
 - ► Astroparticle physics, ion physics, magnetic and electric dipole moments
- Feasability and impact on LHC is being studied within the PBC FT working group
 - Bent channeling crystals, solid targets
 - Unpolarized/polarized gas targets, storage cells
- Several implementation scnearios are being looked at (not only in LHCb)
- A first step using a storage cell in LHCb is already being taken

- LHCb already developed a substantial Fixed Target program at the LHC using SMOG (He, Ne, Ar)
- Several proposals have been made to perform a broad and diverse Fixed Target program at the LHC
 - ► Astroparticle physics, ion physics, magnetic and electric dipole moments
- Feasability and impact on LHC is being studied within the PBC FT working group
 - Bent channeling crystals, solid targets
 - Unpolarized/polarized gas targets, storage cells
- Several implementation scnearios are being looked at (not only in LHCb)
- A first step using a storage cell in LHCb is already being taken
- Future: crystals, solid targets, polarized gas targets in LHCb ?

- LHCb already developed a substantial Fixed Target program at the LHC using SMOG (He, Ne, Ar)
- Several proposals have been made to perform a broad and diverse Fixed Target program at the LHC
 - ► Astroparticle physics, ion physics, magnetic and electric dipole moments
- Feasability and impact on LHC is being studied within the PBC FT working group
 - Bent channeling crystals, solid targets
 - Unpolarized/polarized gas targets, storage cells
- Several implementation scnearios are being looked at (not only in LHCb)
- A first step using a storage cell in LHCb is already being taken
- Future: crystals, solid targets, polarized gas targets in LHCb ?
- ... or elsewhere in the LHC ?

THANK YOU FOR YOUR ATTENTION

References I

- V.G. Baryshevsky, Pis'ma Zh. Tekh. Fiz. 5 (1979) 182: Sov. Tech. Phys. Lett. 5 (1979) 73; V. L. Lyuboshits, Yad. Fiz. 31, (1980) 986 [Sov. J. Nucl. Phys. 31, (1980) 509]; I. J. Kim, Nucl. Phys. B 229, (1983) 251; L. Pondrom, in Proceedings of the 1982 Division of Particles and Fields Summer School on Elementary Particle Physics and Future Facilities, Snowmass, Colorado, edited by R. Donaldson, R. Gustafson, and F. Paige (Fermilab, Batavia, 1983).
- [2] D. Chen et al., "First Observation of Magnetic Moment Precession of Channeled Particles in Bent Crystals", Phys. Rev. Lett. 69, 3286 (1992).
- [3] L. Burmistrov et al., "Measurement of Short Living Baryon Magnetic Moment using Bent Crystals at SPS and LHC", Expression of interest, CERN-SPSC-2016-030; SPSC-EOI-012.
- [4] D. Mirarchi, "Crystal Collimation for LHC", CERN-ACC-2015-0143, CERN-THESIS-2015-099, PhD thesis, Imperial College London (2015).
- [5] A.S. Fomin et al., "Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals", J. High Energ. Phys. (2017) 2017: 120, arXiv:1705.03382 [hep-ph].
- [6] F.J. Botella et al., "On the search for the electric dipole moment of strange and charm baryons at LHC", Eur. Phys. J. C (2017) 77: 181, arXiv:1612.06769 [hep-ex].
- [7] E. Bagli et al., "Electromagnetic dipole moments of charged baryons with bent crystals at the LHC", Eur. Phys. J. C (2017) 77: 828, arXiv:1708.08483 [hep-ex].
- [8] A.S. Fomin et al., "Anomalous magnetic dipole moment of the τ lepton using bent crystal at the LHC", arXiv:1810.06699 [hep-ph].
- [9] R. Aaij et al. (LHCb Collaboration), "Measurement of Antiproton Production in p-He Collisions at 22001 (2018).
- [10] R. Aaij et al. (LHCb Collaboration), "First measurement of charm production in fixed-target configuration at the LHC", submitted to Phys. Rev. Lett., arXiv:1810.07907 [hep-ex].
- [11] NA49 collaboration, H. G. Fischer, "Baryon yields, isospin effects and strangeness production in elementary hadronic interactions", Acta Phys. Hung. A17 (2003) 369.
- [12] "Precision luminosity measurements at LHCb with beam-gas imaging", C. Barschel, CERN-THESIS-2013-301, https://cds.cern.ch/record/1693671.
- "Precision luminosity measurements at LHCb" The LHCb collaboration, JINST 9, (2014) P12005, http://stacks.iop.org/1748-0221/9/i=12/a=P12005.
- [14] "Study of the relative LHC bunch populations for luminosity calibration", G. Anders et al., CERN-ATS-Note-2012-028 PERF, BCNWG Note 3, https://cds.cem.ch/record/1427726.
- [15] E. Steffens and W. Haeberli, "Polarized gas targets", Rep. Prog. Phys., 66 (2003) 1887.

- [16] See for example in http://www.scholarpedia.org/article/Nucleon_Form_factors.
- [17] C. Haddjidakis et al, "A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies", arXiv:1807.00603 [hep-ex].

FL DESY/Zeuthen seminar Hamburg/Berlin 18.12.2018

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで