Physics at the HL-LHC

Andreas B. Meyer

Terascale & Tuesday Seminar 27 November 2018

LHC Run-2

LHC Run-2

The High-Luminosity LHC

Full exploitation of the LHC at the highest luminosity

- x 10 integrated luminosity (x 100 w.r.t 2016)
- Better detectors with larger acceptance, better triggers
- Improved analysis and theory

The High-Luminosity LHC

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034						
	LHC		High-Luminosity LHC			
	LS2	Run 3	LS3	Run 4	LS4	Run 5
ATLAS and CMS		2 x 10 ³⁴ 300 fb ⁻¹	Detector Upgrade	5-7 x 10 ³⁴ ∼1000 fb ⁻¹		5-7 x 10 ³⁴ 3000 fb ⁻¹
LHCb	Detector Upgrade	2 x 10 ³³ 20 fb ⁻¹		2 x 10 ³³ 50 fb ⁻¹	Detector Upgrade II	2 x 10 ³⁴ 300 fb ⁻¹

Full exploitation of the LHC at the highest luminosity

- x 10 integrated luminosity (x 100 w.r.t 2016)
- Better detectors with larger acceptance, better triggers
- Improved analysis and theory

Detector Upgrades

Example: Inner Track Detectors

Acceptance: $|\eta| < 2.5$

Example: Inner Track Detectors

Detector Performance

DESY.

Suppression of PU-tracks

10

HL-LHC Physics

- Standard Model
 - Ultimate precision measurements and constraints
- Higgs
 - Precise determination of H(125) properties
 - Search for new phenomena in the Higgs sector
- Direct Searches
 - Supersymmetry
 - Long-lived particles
 - Dark Matter
 - Heavy Resonances
- Flavour
 - CKM metrology and QCD spectroscopy
 - Rare decays → flavour anomalies ?
- Heavy lons
 - Precision study of material properties of QCD media
 - Study HI-like behaviour in small systems (pp and pA)

Higgs factory: 150 million H and 120 k HH

> Novel approaches, better detectors: stringent tests of BSM scenarios

Low-P_T/high-P_T complementarity No-lose theorem ?

Precise differential measurements

Workshop on Physics at HL-LHC and Perspectives for HE-LHC

http://lpcc.web.cem.ch/hlhe-lhc-physics-workshop

- Review, extend and refine our understanding of the HL-LHC physics potential
- Discuss new ideas and reassess prospects, in light of increased precision and new methods
- <u>Begin</u> a study of physics at the HE-LHC, a possible pp collider with energy of ~27 TeV
- Working Group Report, "YR2018", is imminent
- Two 10-page executive summaries (one on HL-LHC and one on HE-LHC) to be submitted to the European Strategy in December 2018

October 2017 Kick-off meeting

June 2018 <u>Plenary meeting</u>

December 2018 Submission of reports

> 1 March 2019 Jamboree

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/FTR/index.html

Andreas B. Meyer

Physics at the High-Luminosity LHC

HL-LHC Projected Uncertainties

- Effort to make <u>realistic</u> projections,
 → assumptions affect conclusions
- Systematic uncertainties will be limiting factor for more and more measurements

- Statistical uncertainties scale as 1/√L
- Theory: assume reduction by factor 2
- Experimental systematics scale as $1/\sqrt{L} \rightarrow$ until "floor"
- "Floor" values for all physics objects estimated and agreed
- Keeping "Run-2" and "stat-only" for comparison

Expect to exceed expectations

Standard Model

Ultimate Precision Measurements

Ultimate Precision PDF

- Parton density distributions based on ultimate precision differential cross sections
- Projection using pseudo-data of Z(pt), highmass DY, top quark pair, W+charm, direct photon, inclusive jets

Example W+charm

Ultimate Precision Cross Sections

- Run-2 example: $\sigma_{fid}(Z/\gamma^* \rightarrow \ell \ell) = 502.2 \pm 0.3 \text{ (stat)} \pm 1.7 \text{ (syst)} \pm 9.0 \text{ (lumi) pb}$
- arXiv:1612.03016 Systematic uncertainties Run 1 data Events / GeV Lepton ID: 0.3% ATLAS Data 10⁶ $\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$ total (stat) Lepton isolation: 0.15% Z/γ^̃→μμ Ζ/ν^{*}→ττ Signal modelling: 0.2% 10⁵ + single top Dibosons Integrated luminosity: ~2% Multiiet 10⁴ Luminosity is single 10^{3} dominant uncertainty HL-LHC 10^{2} Improved luminosity detectors (being designed) 10 Further refined Van-der-Meer analysis Additional low-PU runs for cross section measurements 60 80 100 120 140 (no uncertainty due to low-to-high PU extrapolation)

Once measured at (sub-)percent level, Z production rate can help luminosity measurement → test and prove in Run-3

Target luminosity uncertainty YR2018: 1%

m_{uu} [GeV]

- Low-PU run (µ~2) at HL-LHC:
 - 200 pb⁻¹, |η|<2.4: 2x10⁶ evts. 16 MeV
 - 200 pb⁻¹, |η|<4:
 12 MeV
 - 1 fb⁻¹, |η|<4: 9 MeV

+ ultimate PDF: 5 MeV

Ultimate Precision Top

- More statistics \rightarrow samples and calibration
- Better systematics (both theory and experim
- Combination of different methods arXiv:1807.06617

0.3/ab, 14 TeV

Total uncertainty on m_t [GeV]

З

2.5

1.5

0.5

Run I

3/ab, 14 TeV

Higgs

Precise Properties and Couplings for H(125) Searches in the Higgs Sector

Higgs Production and Decay

 "κ-model": Fit of scale-factors κ to the data assuming SM processes

Physics at the High-Luminosity LHC

DESY.

Andreas B. Meyer

Physics at the High-Luminosity LHC

Andreas B. Meyer

Differential Higgs Measurements

Higgs and Charm

- BR(H \rightarrow cc): ~3%
- ATLAS: $ZH \rightarrow \ell \ell cc$
 - Run-2: µ < 110 x SM @ 95CL arXiv:1802.04329
 - HL-LHC: µ < 6.3 x SM @ 95CL
- LHCb:
 - $H \rightarrow cc$ (Run-1): $\mu < 7900 \times SM$ LHCb-CONF-2016-006
 - For 300 fb⁻¹ expect better than 7 x SM
- Refined multi-class flavour separation algorithms promise further improvements

Good prospects also for $H \rightarrow cc$

Longitudinal Vector Boson Scattering

- Unitarization of $V_L V_L \rightarrow V_L V_L$ cross section at TeV scale: Scalar Higgs and/or new physics to cancel divergence
- Direct test of EW-symmetry breaking mechanism
- HL-LHC improved forward detectors and acceptance

σ

Events/bin

400

1200

1000

800

600

400

WZ

Wγ

0.3 0.2

200

300

- 4-top highly relevant in many BSM scenarios
- 2HDM+a: phenomenology depending on m_H, m_A, m_a, and A-a mixing angle θ

Terascale & Tuesday Seminar, Hamburg, 27 Nov 2018

500

600

400

700

800

900

m_a [GeV]

1000

29

BSM Searches in the Higgs Sector

- CP even established, but CP odd admixture not excluded
 - HVV in production and decay
 - Hff in decay:
 - require fermion with observable polarisation: $H \rightarrow \tau \tau$
 - No projections available yet
- CMS-FTR-18-016 Invisible Higgs decays: unseen SM (e.g. neutrino) or BSM (e.g. DM) B_{inv} < 4% (20%) HL-LHC (Run2) @95 CL
- CMS-FTR-18-011 Exotic decays: $H \rightarrow BSM$ or forbidden SM decays (for $\kappa_V \leq 1$) B_{BSM} < 6% (34%) HL-LHC (Run2) @95 CL
- ATL-PHYS-PUB-2015-043 Rare SM decays: e.g. $H \rightarrow J/psi \gamma$ B(H→J/psiy) < 44 x 10⁻⁶ @ 95 CL $(20 \times SM)$

$$A(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}}q_{1}^{2} + \kappa_{2}^{\text{VV}}q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}} + \frac{\kappa_{3}^{\text{VV}}(q_{1} + q_{2})^{2}}{\left(\Lambda_{Q}^{\text{VV}}\right)^{2}}\right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu},$$

$$\mathbf{SM}$$

$$f_{ai} = |a_{i}|^{2} \sigma_{i} / \sum |a_{i}|^{2} \sigma_{i} \quad \phi_{ai} = \arg(a_{i}/a_{1})$$

σ

σ

CP odd

Direct Searches

Supersymmetry, Long-Lived Particles, Dark Matter, Heavy Resonances

Supersymmetry

- Strong SUSY ($\sigma \ge 1$ pb at m = 500 GeV): many scenarios up to 1 TeV already excluded
- Electroweak SUSY ($\sigma < 0.1$ pb at m = 500 GeV): could still be light

DESY.

Physics at the High-Luminosity LHC

Long-Lived Particles

- Various scenarios: mass degeneracy, small couplings, heavy mediators,
- Direct detection or collateral event features
 → creative use of experiments
- Dedicated LHC experiments Codex-b, Mathusla, MilliQan, Faser

Dark Matter ...

- ... is known to exist:
 → reveal its elementary nature at the LHC ?
- Simplified models for comparison with direct detection experiments

Low p_T / High p_T Complementarity

Flavour Physics

CMS-FTR-18-013

toy events

full PDF

CMS Phase-2

Simulation Preliminary

Gev

Terascale & Tuesday Seminar, Hamburg, 27 Nov 2018 39

Flavour Anomalies: low p_T

- Tension in current measurements
 - R(K*), b \rightarrow sµµ: 2-3 σ below expectation
 - R(D*), b $\rightarrow c\tau v$: 3-4 σ above expectation
 - P_5 ' from $B \rightarrow K^* \mu \mu$: LHCb also in tension
- LHCb will measure several more channels, also with $B_{S,}\,\Lambda_{b}$ and B_{c}

DESY.

40

- $R(K^*) b \rightarrow s\ell\ell$
 - Theoretically very clean
 - Could be explained by LQ or flavour violating Z'
 - $Z' \rightarrow \mu \mu$ already excluded

Heavy Ion Physics

Precise Differential Measurements

Heavy Ion Physics

- Determine material properties of QCD media
- Study HI-like behaviour also in pp and pA (Flow behaviour, long-range correlations, nPDF)
- Future HI running (Run-3 and Run-4):
 - Factor ~20 (100) more data for CMS, ATLAS (Alice)
 - Precise differential measurements

Exclusion limits on Axion-like particle (ALP) masses vs coupling from light-by-light scattering in UPC ATL-PHYS-PUB-2018-018

Summary

HL-LHC: superior detectors, refined analyses, advanced theory

Recent detailed update and extension of HL-LHC projections

3000 fb⁻¹ of extremely rich and exciting physics

- Standard Model: Ultimate Precision
- Higgs: Full factory mode
- Direct searches: Discover new physics or close a few chapters
- Flavour: High/low pT complementarity
- Heavy Ion: precise differential measurements

Expect to exceed expectations

Terascale & Tuesda