

DESY Particle and Astroparticle Physics Colloquium, 10 Sept 2018

Recent Higgs results from LHC

Giovanni Petrucciani (CERN)

LHC Run 1

- 2012: a Higgs boson discovered at LHC
- Full LHC Run 1 data:
 - H mass measurement
 125.09 ± 0.24 GeV (0.2%)
 - Excluded alterative J^{CP}
 hypotheses (e.g. 0⁻, 2⁺)
 - Inclusive production and couplings to W/Z/γ, t/b/τ probed at 10–30% level

LHC Run 2

- $\sqrt{s: 7-8 \text{ TeV}} \rightarrow 13 \text{ TeV}$ - $\times 2-4$ increase in $\sigma(H)$
- Higher inst. luminosity: ~ $8 \cdot 10^{33} \rightarrow ~ 2 \cdot 10^{34}$
 - factor 2 above LHC design
- Larger datasets:
 - 2016 data: L_{int} ~36 fb⁻¹ (most results based on this)
 - + 2017: total $L_{int} \sim 80 \text{ fb}^{-1}$
 - + 2018: L_{int} ~150 fb⁻¹ in reach (×4 compared to 2016 data)

CÉRN

G. Petrucciani (CERN)

Higgs boson interactions

G. Petrucciani (CERN)

H – Vector boson interactions

 H–W and H–Z are the most essential Higgs boson couplings.

10.09.18

- Clearly established from WW/ZZ decays, already since Run 1
- H-γ and H-g interaction in SM only realized via loops
 - $H \rightarrow \gamma \gamma$ clearly established in Run 1
 - "Inclusive" H production in good agreement with SM predictions, dominantly from gg → H

H – fermion interactions

In the SM, $\lambda_f = m_f / v$ for all fermions

H – fermion interactions

In the SM, $\lambda_f = m_f / v$ for <u>all</u> fermions

H–fermion interaction

$H \rightarrow \tau \tau$ observation

 First individual fermion coupling to be established with ≥5σ significance

(already achieved with the LHC Run 1 combination)

 $H \rightarrow \tau \tau$

- gg → H has the largest cross section among all Higgs boson production modes at LHC
- In the SM, the top quark loop gives the dominant contribution
- Production cross section is sensitive to any heavier BSM particles with QCD interactions

- **ttH**: direct assessment of top-Hig coupling at tree level
- also, final state similar to that of many BSM physics searches (e.g. supersymmetry)

ttH observation

$H \rightarrow bb$

- Largest BR among all the decays:
 - Dominates total width of SM Higgs
 - Once the decay is established, it can be used to probe Higgs production at very high $\ensuremath{p_{\rm T}}$
- Probably the only Yukawa coupling to a down-type quark within LHC reach

$H \rightarrow bb observation$

What next?

$H \rightarrow \mu \mu$

 In principle, an easy analysis: muons are the easiest object to identify and measure.

Main challenge: the irreducible Z^{*}→µµ
 background

$$-\sigma \times BR(H \rightarrow \mu\mu) = 12 \text{ fb}$$

 $-\sigma \times BR(Z \rightarrow \mu\mu) \sim 1.9 \text{ nb}$ (1.6 × 10⁵ times larger)

$H \rightarrow \mu\mu$: methods

Entries / 0.5 GeV

1.5

- Good muon momentum resolution is critical
 - Categorize events
 according to muon |η|

both muons $|\eta| < 1.05$

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

Signal model

-**●**- ggF

 $2.5 - Central medium p_{++}^{\mu\mu}$

FWHM

5.7 GeV

21

$H \rightarrow \mu\mu$: methods

- Suppress tt $\rightarrow \mu\mu\nu\nu bb$ using b-tagging, E_T^{miss}
- Select phase space regions with best S/B: $-high p_T(\mu\mu)$ or VBF production
- Different approaches in ATLAS & CMS:
 - ATLAS: MVA selection to target VBF events, simple $p_T(\mu\mu)$ categorization for the rest, b-jet veto and E_T^{miss} cuts against tt
 - CMS: inclusive MVA discriminator using muons, jets, b-tag, E_T^{miss} trained against all backgrounds

$H \rightarrow \mu\mu$: a look at the data

$H \rightarrow \mu\mu$: results

ATLAS result based on 2016 + 2017 data,
 CMS result on Run 1 + 2016 data

Comparable sensitivity

- Best fit values of signal strength $\mu = \sigma/\sigma_{SM}$:
 - ATLAS: μ = 0.1 ± 1.0
 - CMS: $\mu = 0.9 \pm 1.0$
- Observed & expected upper limits (95% CL)

 ATLAS: μ < 2.1 obs (2.0 exp. for μ = 0)
 CMS: μ < 2.9 obs (2.2 exp. for μ = 0)

 $H \rightarrow cc$?

Charm coupling λ_c ~ λ_τ, but way harder to probe: BR(cc) ~ 0.05 × BR(bb) and, H → bb background!

Three approaches have been explored so far:

- Direct searches for inclusive $H \rightarrow cc$ decays, as $H \rightarrow bb$
- Searches for charmonium decays: $H \rightarrow J/\Psi \gamma$
- Extract constraints on λ_c from kinematics

inclusive $H \rightarrow cc$

- So far attempted only by ATLAS, to demonstrate charm tagging performance
- Much simpler approach compared to VH→bb:
 - use only $Z(\ell \ell)$ H production
 - fit m(cc) distribution in cutbased categories, instead of a full MVA-based analysis
- Limits on μ = σ×BR / σ_{SM}×BR_{SM} from analysis on 2016 data
 – μ < 110 obs. (μ < 150 exp.)

27

J/Ψ

 $H \rightarrow J/\Psi \gamma$

Н

- Very rare decay in the SM: BR(H \rightarrow J/ Ψ γ) ~ 3×10⁻⁶
 - 1.8 × 10⁻⁷ with BR(J/ $\Psi \rightarrow \mu\mu$), factor 13000 / 180 smaller than H $\rightarrow \gamma\gamma$ / 4 μ
- Resonant signal, and no
 H → bb background

р

 μ^+

10.09.18

CERN

m(µµ) = m_I,

$H \to J/\Psi \, \gamma$

- Currently the most recent & advanced analysis is by ATLAS, on 2016 data
 - signal extraction using bi-dimensional fit in $m(\mu\mu)$ vs $m(\mu\mu\gamma)$ plane
 - background model for continuum μμ γ and J/Ψ γ
 built by sampling probability densities extracted in data from relaxed selection
- CMS performed same search on 2016 data, with simpler approach, 1D fit of m(μμγ)
- Both analyses also search for $Z \to J/\Psi ~\gamma$

 $H \rightarrow J/\Psi \gamma$: look at the data

- 1D projections on m(μμγ) and m(μμ)
 - Higgs signal shown for BR 10^{-3} (~300 × SM)

$H \rightarrow J/\Psi \gamma$: results

- ATLAS upper limit on BR(H→J/Ψγ)
 BR < 3.5×10⁻⁴ observed (3.0×10⁻⁴ expected), corresponding to < 120 (100) × BR_{SM}
- CMS upper limit on BR(H→J/Ψγ)
 BR < 7.6×10⁻⁴ observed (5.2×10⁻⁴ expected), corresponding to < 260 (170) × BR_{SM}
 Combination with Run 1: < 220 (160) × BR_{SM}

CMS PAS SMP-17-002

31

10.09.18

constrain λ_c from H kinematics?

• $\sigma(ggH)$ and $p_T(H)$ dependent on $\lambda_t, \lambda_b, \lambda_c$,

- O(1%) effects from charm, mostly at low p_T

- Possible extra contact term c_g from heavy BSM physics, at scale $\Lambda >> m_h$, can be probed at high p_T

constrain λ_c from $p_T(H)$

CMS analysis, 2016 data:

 p_T(ggH) predictions provided by theorists in terms of

$$\kappa_q := \lambda_q / \lambda_q^{SM}$$

- p_T range [0, 120] GeV, well below m_{top}
- Parameterization as quadratic polynomial in κ_t, κ_b, κ_c at each p_T

measure $p_T(H)$

- Combined fit of p_T(H) measurements from γγ and ZZ final states
 - H→bb measurement starting from 350 GeV
- Likelihood unfolding, no regularization.
- Theory uncertainties on p_T(H) included

Model assumptions

- Vary only κ_b , κ_c : fix $\kappa_t = 1$ in $\sigma(ggH)$ – VBF, WH, ZH, ttH as in SM (with uncertainties) – $\sigma(bbH)$ scaled from SM prediction as κ_b^2
- Modifications to couplings also affect BR's.
 Considered two extreme scenarios:
 - 1. Only SM decays, all other coupling modifiers κ_i fixed to 1: BR($\gamma\gamma$, ZZ) strongly sensitive to κ_b , κ_c
 - 2. BR($\gamma\gamma$) and BR(ZZ) considered free parameters i.e. rely only on $p_T(H)$ shape information

Results

Results

Higgs boson self-coupling

Self-coupling essential in the EWSB potential

$$V(\varphi) = -\mu^2 (\Phi^{\dagger} \Phi)^2 + \lambda (\Phi^{\dagger} \Phi)^2$$

$$= V_{0} + \frac{1}{2} m_{H^{2}} H^{2} + \lambda v H^{3} + \frac{1}{4} \lambda H^{4}$$

H.

Higgs boson self-coupling

• Trilinear λ can be probed in HH production

- With a caveat: other couplings affect HH too!

HH production

- SM σ(ggHH): 33.5 fb:
 factor ~200 smaller than σ(ggH)
- Smallness of SM HH due to destructive interference

– Larger
$$\sigma$$
 for $\lambda = 0$

 $\sigma/\sigma_{SM} \sim 2.09 \,\kappa_t^4 - 1.36 \,\kappa_\lambda \kappa_t^3 + 0.28 \,\kappa_\lambda^2 \kappa_t^2$ $[\kappa_t := \lambda_t / \lambda_t^{SM}; \kappa_\lambda := \lambda / \lambda_{SM}]$

HH production

- Smallness of σ requires using larger BR decays
- Currently best sensitivity for SM-like HH in:
 bbtt (ATLAS),
 bbyy (CMS)

42

b

Н

н

$\mathsf{CMS}\:\mathsf{HH}\to\mathsf{bb}\:\gamma\gamma$

σ_{ggHH}×BR = 0.087 fb – expect ~ 3 events / 2016 dataset

10.09.18

• Rely on the two invariant masses:

- m(γγ): discriminate between signal and continuum γγ + jets
- m(bb): discriminate against H + jets (including VBF, VH, ttH, ...)
- Exploit tools developed for the $H \rightarrow \gamma \gamma$ and $H \rightarrow bb$ analyses:
 - vertex selection, photon MVA identification & energy calibration
 - b-jet energy regression: dedicated version using also E_T^{miss} to balance the event (as $Z_{\ell\ell}H_{bb}$)

$\mathsf{CMS}\:\mathsf{HH}\to\mathsf{bb}\:\gamma\gamma$

• Build additional variables to improve purity:

correction to reduce correlation with m_{jj} , $m_{\gamma\gamma}$ and improve resolution (simple approximation of a kinematic fit)

$\mathsf{CMS}\:\mathsf{HH}\to\mathsf{bb}\:\mathsf{\gamma}\mathsf{\gamma}$

- Build additional variables to improve purity:
 - **1.** $M_{X} := m_{\gamma\gamma jj} + (m_{H} m_{jj}) + (m_{H} m_{\gamma\gamma})$
 - 2. MVA discriminant using b-tagging, helicity angles, $p_T^{\gamma\gamma}/m_{\gamma\gamma ii}$, $p_T^{bb}/m_{\gamma\gamma ii}$

$\mathsf{CMS}\:\mathsf{HH}\to\mathsf{bb}\:\mathsf{\gamma}\mathsf{\gamma}$

Signal extraction: 2D fit of m_{γγ} vs m_{bb} in categories defined by M_x & MVA

$HH \rightarrow bb \gamma\gamma results$

• CMS upper limit on σ_{ggHH} : 0.79 pb (expected upper limit 0.63 pb)

- Corresponding to 24 × σ_{SM} (19 × σ_{SM})

- Further ~1.3% improvement if including also expected signal from VBF HH
- ATLAS bbyy analysis, simpler approach:
 - no m(bb) regession, mostly cut-based categorization, 1D fit of m_{yy}
 - Upper limit 0.73 pb (expected 0.93 pb), corresponding to $22 \times \sigma_{sm} (24 \times \sigma_{sm})$

arXiv 1806.00408 sub to PLB

46

1807.048

dns

ATLAS HH \rightarrow bb $\tau\tau$

- Analysis in $bb\tau_\ell\tau_h$ and $bb\tau_h\tau_h$ final states
 - Relying on 1 ℓ , ℓ + τ_h , 1 τ_h , 2 τ_h triggers
 - $-m_{\tau\tau}$ reconstruction with MMC algorithm
 - $-m_{HH}$ reconstructed with $m_{\tau\tau} = m_{bb} = m_{H}$ constraint
- Main backgrounds from tt, Z_{ττ} + b/c jets, fakes (jets mis-id as τ_h)

ATLAS HH \rightarrow bb $\tau\tau$

• BDT to separate HH from all backgrounds $(\tau_h \tau_h)$, or dominant tt background $(\tau_\ell \tau_h)$:

- inputs: $m_{\tau\tau}$, m_{bb} , m_{HH} , ΔR_{bb} , $\Delta R_{\tau\tau}$, $E_T^{miss} \varphi$ centrality $(\tau_h \tau_h)$ or $m_T^{\ell \nu} (\tau_\ell \tau_h)$

ATLAS HH \rightarrow bb $\tau\tau$

• Signal extraction from BDT output distribution

- ATLAS upper limit on σ_{HH→ bbττ}: 30.9 fb (expected upper limit 36.1 fb)
 - Corresponding to 12.7 × σ_{SM} (14.8 × σ_{SM})
 - Most sensitivity from $\tau_h \tau_h$ (exp. 17 × σ_{SM})
- Earlier CMS analysis, simpler approach:
 - Fit to m_{T_2} instead after BDT cut $(\tau_{\ell}\tau_h)$, or after cut-based selection $(\tau_h\tau_h)$
 - Upper limit 75.4 fb (expected 61.0 fb), corresponding to $30 \times \sigma_{SM} (25 \times \sigma_{SM})$

arXiv

PLB

50

Conclusions

- Higgs boson coupling to all 3rd generation fermions have now been observed (≥5σ)
 all results comparible with SM predictions
- Good prospects for $H \rightarrow \mu\mu$

 – analyses now approaching O(1)×SM sensitivity, with only a fraction of run 2 data analyzed

 Several analyses exploring Higgs-charm couplings and HH, but it's a long way to go – currently at O(100)×SM and O(10)×SM