Neutrinos

from a galaxy half-way across the universe.

Markus Ackermann, DESY Physikseminar 04.09.2018

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Cosmic accelerators

- Particle accelerators in our cosmos reach energies far beyond man-made devices
- Gravitational/rotational energy driven plasma accelerators

DESY.

DESY.

PeV astronomy with neutrinos

Neutrinos allow us to peek beyond the gamma-ray horizon...

Environments opaque to EM radiation

Environments opaque to EM radiation

Environments opaque to EM radiation

Neutrino telescopes: IceCube

IceCube array 86 strings 5160 optical sensors

Neutrino telescopes: IceCube

IceCube array 86 strings 5160 optical sensors

Neutrino telescopes: IceCube

IceCube array 86 strings 5160 optical sensors Track-like event signatures (CC interactions of v_µ)

- Angular resolution: < 1°
- Effective volume: up to tens of km³.
- Energy resolution: only indirect measure of μ energy.

Cosmic neutrinos

Up to > 2.5 PeV

Early

7

Late

The cosmic neutrino spectrum

IceCube high-energy neutrinos

Compatible with an isotropic distribution

- points to extragalactic origin of cosmic neutrinos
- No significant clustering of high-energy events

What is the origin of the astrophysical neutrinos?

Active Galaxies ?

Where are the cosmic particle accelerators and how do they work ?

Supernova remnants ?

Real-time follow-up of high-energy events

A supernova exploded ?

What happened in this direction in the sky when IceCube detected this neutrino?

Real-time follow-up of high-energy events

A supernova exploded ?

What happened in this direction in the sky when IceCube detected this neutrino?

An active galaxy flared ?

- IceCube observes an interesting event
 - > High-energy neutrinos
 - > Cluster of neutrinos
- Information is sent out to partner observatories or made public
- Average response time: ~ 30 s
- High-energy event alerts since 2016

- IceCube observes an interesting event
 - > High-energy neutrinos
 - > Cluster of neutrinos
- Information is sent out to partner observatories or made public
- Average response time: ~ 30 s
- High-energy event alerts since 2016

- IceCube observes an interesting event
 - > High-energy neutrinos
 - > Cluster of neutrinos
- Information is sent out to partner observatories or made public
- Average response time: ~ 30 s
- High-energy event alerts since 2016

High-energy alerts

and the variable gamma-ray sky

High-energy alerts

and the variable gamma-ray sky

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

DESY.

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

DESY.

Fermi LAT observations

The gamma-ray blazar TXS0506+056

Fermi LAT observations

Fermi LAT observations

Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the lceCube-170922A error region.

ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT Credential Certification: David J. Thompson (David J. Thompson@nasa.gov)

Subjects: Gamma Ray, Neutrinos, AGN

Referred to by ATel #: 10792, 10794, 10799, 10801, 10817, 10830, 10831, 10833, 10838, 10840, 10844, 10845, 10861, 10890, 10942

5

4

3

The light curve of TXS0506+056

From radio to VHE gamma rays

DESY.

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

The spectral energy distribution (SED)

Observed radiation power as a function of frequency / energy

DESY.

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

How likely does this happen by chance ?

- 1563 gamma-ray blazars identified by Fermi LAT (3LAC catalog)
- TXS 0506+056 is one of the brightest sources during its outburst
- Correlation between gamma-ray and neutrino brightness expected

How likely does this happen by chance ?

An a-posteriori test with pseudo-experiments

How likely does this happen by chance ?

Looking back at IceCube's full dataset for TXS 0506+056

Looking back at IceCube's full dataset for TXS 0506+056

13±5 above the background of atmospheric neutrinos, 3.5σ

Neutrino luminosity (averaged over 158 days): $(1.2^{+0.6}_{-0.4}) \times 10^{47} \text{ erg s}^{-1}$

DESY.

A double feature in Science

Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

The IceCube Collaboration, *Fermi*-LAT, MAGIC, *AGILE*, ASAS-SN, HAWC, H.E.S.S., *INTEGRAL*, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, *Swift/NuSTAR*, VERITAS, and VLA/17B-403 teams*†

Science 361 (2018) no. 6398, eaat1378

Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert

IceCube Collaboration*+

Science 361 (2018) no. 6398, 147-151

Do we understand what we see ?

- Did we expect Blazars to be cosmic-ray accelerators ?
- Have we found the first source of ultrahigh-energy cosmic rays
- Do we learn something about the acceleration processes and environments in these objects ?
- Is this all consistent ?

A short introduction to active galaxies and Blazars

M87 seen from Hubble Space Telescope

Distance: ~ 50 million light years

The AGN model

31

Table 1 The AGN zoo: list of AGN classes.

TL		Class/Acronym	Meaning	Main properties/reference	
I NE AGI		Quasar	Quasi-stellar radio source (originally)	Radio detection no longer required	
		Sev1	Sevfert 1	FWHM $\geq 1,000 \text{ km s}^{-1}$	
1		Sev2	Seyfert 2	FWHM $\leq 1,000 \text{ km s}^{-1}$	
		QŠO	Quasi-stellar object	Quasar-like, non-radio source	
		QSO2	Quasi-stellar object 2	High power Sey2	
	0.00	RQ AGN	Radio-quiet AGN	see ref. 1	
		RL AGN	Radio-loud AGN	see ref. 1	
		Jetted AGN		with strong relativistic jets; see ref. 1	
		Non-jetted AGN		without strong relativistic jets; see ref. 1	
		Type 1		Sey1 and quasars	
GN		Type 2		Sey2 and QSO2	
		FR I	Fanaroff-Riley class I radio source	radio core-brightened (ref. 2)	
A		FR II	Fanaroff-Riley class II radio source	radio edge-brightened (ref. 2)	
E.		BL Lac	BL Lacertae object	see ref. 3	
E	FR-1	Blazar	BL Lac and quasar	BL Lacs and FSRQs	
2		BAL	Broad absorption line (quasar)	ref. 4	
5	/	BLO	Broad-line object	$FWHM \gtrsim 1,000 \text{ km s}^{-1}$	
1		BLAGN	Broad-line AGN	$FWHM \gtrsim 1,000 \text{ km s}^{-1}$	
÷ H	/	BLRG	Broad-line radio galaxy	RL Sey1	
a	/	CDQ	Core-dominated quasar	RL AGN, $f_{core} \ge f_{ext}$ (same as FSRQ)	
		CSS	Compact steep spectrum radio source	core dominated, $\alpha_r > 0.5$	
		CT	Compton-thick	$N_{\rm H} \ge 1.5 \times 10^{24} {\rm ~cm^{-2}}$	1
	NLRG	FR 0	Fanaroff-Riley class 0 radio source	ref. 5	1
	1	FSRQ	Flat-spectrum radio quasar	RL AGN, $\alpha_{\rm r} \le 0.5$	1
		GPS	Gigahertz-peaked radio source	see ref. 6	1
		HBL/HSP	High-energy cutoff BL Lac/blazar	$v_{\text{synch peak}} \ge 10^{15} \text{ Hz} \text{ (ref. 7)}$	1
	1 1	HEG	High-excitation galaxy	ref. 8	1
		HPQ	High polarization quasar	$P_{\text{opt}} \ge 3\%$ (same as FSRQ)	- 1
		Jet-mode		$L_{\rm kin} \gg L_{\rm rad}$ (same as LERG); see ref. 9	
		IBL/ISP	Intermediate-energy cutoff BL Lac/blazar	$10^{14} \le v_{\text{synch peak}} \le 10^{15} \text{ Hz (ref. 7)}$	17
-		LINER	Low-ionization nuclear emission-line regions	see ref. 9	
- T		LLAGN	Low-luminosity AGN	see ref. 10 $(-10^{14} \text{ Hz} (-5.7))$	
		LBL/LSP	Low-energy cutoff BL Lac/blazar	$v_{\text{synch peak}} < 10^{-4} \text{ Hz} (\text{ref. } 7)$	
	Seyfert 2	LDQ	Lobe-dominated quasar	RL AGN, $f_{core} < f_{ext}$	
-	2	LEG	Low-excitation galaxy	ref. 8 $P_{\rm ref} = 20^{\circ}$	
5		LPQ	Low polarization quasar	$P_{\text{opt}} < 5\%$	
Ā		NLAGN	Narrow-line AGN	$F W HWI \lesssim 1,000 KHI S$	
a		NLKU NLS1	Narrow line Scutert 1	RL Sey2	
ž		OVV	Optically violently variable (quasar)	(same as ESPO)	
-		Population A	Optically violently variable (quasar)	(same as rSKQ)	
e		Population B		ref 12	
radio-qu		Radiative-mode		Sevferts and quasars: see ref 9	
		RBL	Radio-selected BL Lac	BL Lac selected in the radio band	
		Sev1.5	Sevfert 1.5	ref. 13	
		Sev1.8	Sevfert 1.8	ref. 13	
		Sev1.9	Sevfert 1.9	ref. 13	_ 10 10
		SSRO	Steen-spectrum radio quasar	RL AGN $\alpha_r > 0.5$	- 10.0
		USS	Ultra-steep spectrum source	RL AGN, $\alpha_r > 1.0$	0-3 m -2
		XBL	X-ray-selected BL Lac	BL Lac selected in the X-ray band	U-3 bC
C		XBONG	X-ray bright optically normal galaxy	AGN only in the X-ray band/weak lined AGN	\int
DE				า นนอ์เ เบเนอ	TO PC

DE

31

M⊙

From AGN to Blazars

Non-thermal emission from the jet dominates the SED at almost all wavelengths

Relativistic jet

Black hole

Accretion disk

Viewing angle nearly aligned with jet axis

The Blazar sequence FSRQ & BLLac

Higher luminosity, lower peak frequencies

Ghisellini, Galaxies, 2016

The Blazar sequence FSRQ & BLLac

Higher luminosity, lower peak frequencies

Ghisellini, Galaxies, 2016

The Blazar sequence FSRQ & BLLac

Ghisellini, Galaxies, 2016

The jet

The jet

0.001

0.010

Image courtesy of NRAO/AUI

The jet continued

Constraints from variability and opacity

- Jet launch mechanism and conditions not well known
- Fueled by gravitational energy from accretion /rotational energy from BH
- Magnetically dominated at the base converted into kinetic energy
- Energy dissipation region likely at pc scale
- Fast variability, compact emission region HESS collaboration(2007)

DESY.

DESY.

DESY.

From protons and nuclei To photons and neutrinos E_γ ~ 0.1 E_p Vμ dust torus μ π⁰ (IR) Ve Vμ π+/- $E_{v} \sim 0.05 E_{p}$ p,N cosmic ray γ accretion disk 222 www.xl broadline region (opt, UV) blazar zone (broadband) 22 22 41

To photons and neutrinos

 $\sigma_{\gamma\gamma} \gg \sigma_{p\gamma}$

To photons and neutrinos

Electromagnetic cascade dominated by synchrotron or

inverse Compton emission

- Broadband EM emission from radio
- Absorption of high-energy gamma-ray
- Additional target for p-gamma interactions

Modeling the Blazar emission

SSC, EC, hadronic lepto-hadronic, etc.

Parameter	Description
2	Redshift
$B'(\mathbf{G})$	Magnetic field
$R'_{\rm blob}$ (cm)	Blob size
$\Gamma_{ m bulk}$	Doppler factor
$L'_{e,\text{inj}}$ (erg/s)	Electron injection luminosity
$\alpha_{e,1}$	Electron lower spectral index
$\alpha_{e,2}$	Electron upper spectral index
$\gamma_{e,\min}'$	Min. electron Lorentz factor
$\gamma_{e,\mathrm{br}}^{\prime}$	Electron break Lorentz factor
$\gamma_{e,\max}'$	Max. electron Lorentz factor
$L'_{p,\text{inj}}$ (erg/s)	Proton injection luminosity
$\gamma'_{p,\min}$	Min. proton Lorentz factor
$\gamma'_{p,\max}$	Max. proton Lorentz factor
α_p	Proton spectral index
$\eta_{ m esc}$	escape velocity of e^{\pm} and p
Results	
$L_{\rm Edd}$ (erg/s)	Eddington luminosity *
$L_{\rm jet}/L_{\rm Edd}$	jet physical luminosity (in $L_{\rm Edd}$)
$E_{\nu,\mathrm{peak}},\mathrm{TeV}$	peak energy of neutrino spectrum
N_{ν}/yr	Expected neutrino rate in IceCube

A simple model without protons.....

From Gao et al., 2018

Modeling the Blazar emission

SSC, EC, hadronic lepto-hadronic, etc.

From Gao et al., 2018

Adding protons / neutrinos is not so simple.....

 Electromagnetic cascade would overshoot x-ray observations

Two emission zones

X-rays as the key window

Adding protons / neutrinos is not so simple.....

Two emission zones help to reconcile observations

▲ 0.05 pc

Observer at earth

A structured jet ?

An elegant two emission zone model

DESY.

The case of the 2014/2015 flare

Another interesting case ?

Starting event observed in 2014 (before real-time analysis was online)

158'00'

70

60

- 50

40

- 30

- 20

10

Counts

Another interesting case ?

S.Garappa, TeVPA 2018

51

Where to go from here ?

The next generation of neutrino telescopes

KM3NeT - ARCA

- Similar instrumented volume to IceCube
- Complementary field-of-view
- Better angular resolution than IceCube

Construction has started

DESY.

From IceCube to IceCube-Gen2

IceCube Upgrade

- 7 new strings in center of IceCube
- New calibration devices
- Future IceCube-Gen2 will allow precision studies of cosmic neutrinos.

1000m

Summary

A HE neutrino was found in Sep 2017, arriving from the direction of the flaring gamma-ray Blazar TXS 0506+056

This is unlikely to be a chance coincidence

The evidence is strengthened by finding a second excess of neutrinos from the same direction in an ~ 6 month time window between 2014 and 2015

The interpretation is challenging, multi-zone emission models are needed to describe electromagnetic and neutrino emission.

A single high-energy neutrino already impacts our understanding of Blazar physics

DESY.