

Observation of Top Quark Pair Production in Association with a Higgs Boson

Carmen Diez Pardos (DESY) 6 June 2018

The fundamental building blocks of matter

- SM: Successful description of elementary particles and interactions
- LHC experiments discovered a new Higgs-like boson (m_H=125GeV)
- Candidate to close the long-standing puzzle of how elementary particles acquire mass in the SM
- But does it behave like the SM Higgs?

• Higgs boson: production and decay rates consistent with SM expectations

- Broad programme to measure properties
 - Confirm yet-unobserved processes
 - Search for deviations from SM expectation

The top quark and the Higgs boson

In the SM, elementary particles acquire mass via their interaction with the Higgs field

- Higgs coupling to the fermions (Yukawa coupling): proportional to fermion mass
- Top quark: most massive known particle \rightarrow most strongly-coupled SM fermion ($y_t \sim 1$)
- $\rightarrow\,$ Essential to study Higgs properties, measure the coupling
 - Several open questions
 - Is the mass of the top quark generated by the Higgs mechanism?
 - Role in electroweak symmetry breaking?

Top-Higgs coupling: the hunt for $t\bar{t}H$

Best direct probe of the top-Higgs Yukawa coupling, vital step towards verifying the SM nature of the Higgs boson

- Direct measurement of y_t in ttt production:
 - gluon-gluon fusion: assumes no BSM coupling
- y_t in tH production: access to sign of the coupling

Where to look for it? The Large Hadron Collider

- proton-proton collision energies (\sqrt{s})
- Run-1: 7 & 8 TeV, 25 fb⁻¹- stat. limited
- Run-2: 13 TeV, already $\sim 100 \text{ fb}^{-1}$

Expected 75,000 t $\overline{t}H$ events at the end of this year

This presentation focuses on results with 13 TeV data (up to 80 fb^{-1}) + combination

tTH production

$\sigma_{\rm H}\approx\!\!0.5$ pb at $\sqrt{s}{=}13{\rm TeV}~({\rm m_{H}}{=}125{\rm GeV})$

- \rightarrow Only 1% of total Higgs cross section
- → Larger increase in signal than backgrounds from 8 to 13 TeV
- \rightarrow By this year up to 6 times more data

- tTH decay yields (very) complex final states, with many objects
- Crucial to understand the backgrounds (eg. $\sigma_{t\bar{t}} \approx$ 830 pb @13 TeV)
- Large irreducible backgrounds: $t\bar{t}+X$ (X = b \bar{b} , W, Z)

C. Diez Pardos

Top quark \times Higgs decay channels

- Exploiting all tt decay channels and Higgs decays to
 - $\bullet\$ bottom quarks \rightarrow Large BR, large background contributions
 - $\bullet~$ W, Z bosons, taus \rightarrow smaller production rate, lower backgrounds
 - $\bullet~{\rm photons} \rightarrow {\rm clean}$ final state, very small rate

In the SM $\rm t \rightarrow Wb$ almost 100%, W decay defines final state

Complex final states

- Complex final states, with many objects: leptons, jets, taus
- Large combinatorics of leptons and jets from top quark decays

Challenging backgrounds

All results at: http://cern.ch/go/pNj7

+ diboson production (WW, ZZ), QCD multijets...

Sophisticated analysis strategies

- tt like selections with additional searches for Higgs decay products
- Event categorization based on top quark (W boson) and Higgs decay modes
- Multivariate analysis (MVA) techniques, eg. boosted decision trees (BDT) or deep neural networks (DNN), Matrix-Element-Methods (MEM) used to extract signal, boosted-object reconstruction
- Profile likelihood fits across all categories to extract the signal

$t\bar{t}H(b\bar{b})$ Production

- Large $\mathcal{B}(H \to b\bar{b})$, access coupling 3rd generation quarks
- Challenging final state
 - Huge combinatorics in event reconstruction
 - $\bullet~\mbox{Poor}~H\to b\bar{b}$ mass resolution
 - Large $t\bar{t} + b\bar{b}$ background of $\mathcal{O}(10)pb$ with associated large theory uncertainties: from simulation
- Search channels
 - Leptonic tt: higher purity
 - Fully-hadronic tt : higher rate

$t\bar{t}H(b\bar{b})$ Leptonic

arXiv:1804.03682, PhysRevD.97.072016

- Events with exactly 1 (2) leptons (e, μ)
- At least 3 (4) jets, with at least 1 (3) b-tagged
- Create categories enriched in signal and background events
- Exploiting MEM and MVA and boosted topologies to discriminate signal from background

ttH(bb) Leptonic: dilepton tt channel (CMS)

 $\bullet \geq$ 4j, 3b: BDT separating signal and inclusive $t\bar{t}+jets$ background as final discriminant

C. Diez Pardos

ttH(bb) Leptonic: dilepton tt channel (CMS)

• \geq 4j, \geq 4b: low/high BDT sub-categories + MEM separating against tt + bb background as final discriminant

C. Diez Pardos

ttH(bb) Leptonic: lepton+jets tt channel (CMS)

- Search in single-lepton tt channel
- Deep Neural Network per jet category & most probable process: multi-classification as signal or any of 5 t \bar{t} + jets bkgs. (t \bar{t} + b \bar{b} , t \bar{t} + 2b, t \bar{t} + b, t \bar{t} + c \bar{c} , t \bar{t} + LF)
- Output of categorization yields powerful discriminators
 - \rightarrow One for each process vs all other processes

ttH(bb) Leptonic: lepton+jets tt channel (CMS)

• Final discriminant: DNN output of chosen process node

 $t\bar{t}H(b\bar{b})$

ttH(bb) Leptonic: analysis strategy (ATLAS)

• Events categorised by number of leptons, jets, and b-tagging discriminant

$t\bar{t}H(b\bar{b})$

ttH(bb) Leptonic: analysis strategy (ATLAS)

- 10 control regions to constrain different backgrounds: *H*_T distribution or yields
- 9 signal regions: BDT as final discriminant, with inputs

ttH(bb) Leptonic: analysis strategy (ATLAS)

- 10 control regions to constrain different backgrounds: H_T distribution or yields
- 9 signal regions: BDT as final discriminant, with inputs
- MEM
- Likelihood discriminant: t $\overline{t}H$ against t $\overline{t} + b\overline{b}$
- Event reconstruction techniques: BDT to reconstruct tTH system, Boosted-object techniques

ttH(bb) Leptonic: Results

ttH(bb) Leptonic: Results

ttH(bb) Leptonic: Results

- Uncertainty on $t\bar{t}$ + heavy flavour largest impact
- Statistical uncertainty of MC
- Experimentally limited by b-tagging uncertainties

$t\bar{t}H(b\bar{b}) \text{ Hadronic}$

arXiv:1803.06986

• Challenge:

- Large backgrounds from QCD multijets, $t\bar{t} + jets$, and the irreducible $t\bar{t} + b\bar{b}$
- Larger signal contribution
- Possibility to fully reconstruct the event

ttH(bb) Hadronic: Analysis strategy

- \geq 7 jets, \geq 3 b-tagged jets, $H_{\rm T}$ > 500 GeV, no leptons
- Events categorised by number of jets and b-tagged jets
- Dominant background: QCD-multijet production
- A quark-gluon discriminant is used to differentiate quarks jets from gluon jets
 - Shape from low b-tag multiplicity control region in data
 - Rate from final fit to data

ttH(bb) Hadronic: Analysis strategy

- Final discriminant: MEM
- $\bullet\,$ Constructed from LO matrix elements for the tTH signal and tT + bb backgrounds
- Also performs well against the $t\overline{t} + LF$ jets and QCD multijets backgrounds

ttH(bb) Hadronic: Results

Best-fit $\mu = 0.9^{+1.5}_{-1.5}$, upper 95% C.L. limit 3.8 (3.1) obs. (exp.) × SM

ttH(bb) Hadronic: Results

Best-fit $\mu = 0.9^{+1.5}_{-1.5}$, upper 95% C.L. limit 3.8 (3.1) obs. (exp.) × SM

• Major systematic uncertainties: Multijet estimation, $t\bar{t} + HF$ prediction, b-tagging and JES etc.

05.06.2018

$t\bar{t}H \rightarrow \tau \tau$, $t\bar{t}H \rightarrow ZZ^*$, $t\bar{t}H \rightarrow WW^*$

ttH multilepton

arXiv:1803.05485, PRD 97 (2018) 072003

- Multilepton final states: Higgs decay to W⁺W⁻, ZZ, and au au
- Events categorized based on number of leptons and τ_h candidates

ttH multilepton: analysis strategy

ATLAS: also 2 leptons OS + 1 τ_h

- Additional requirements on jets and b-tagged jets
- Major backgrounds
 - $\bullet\,$ Irreducible: $t\overline{t}+V$ and diboson, predicted from simulation and control regions
 - $\bullet\,$ Reducible: non-prompt leptons in $t\overline{t}+jets$ events, estimated from data
 - Large $t\bar{t} + fake \tau_h$ for 1 lepton + 2 τ_h
- BDT and MEM discriminants to separate signal from backgrounds

ttH multilepton: analysis strategy (CMS)

- Event categorization in lepton flavor, and b-jet multiplicity
- Discriminating variables
 - MEM against tTZ (2 leptons same-sign + 1 τ_h)
 - Yield in 4-leptons (low stats.)

ttH multilepton: analysis strategy (CMS)

- Event categorization in lepton flavor, and b-jet multiplicity
- Discriminating variables
 - MEM against tTZ (2 leptons same-sign + 1 τ_h)
 - Yield in 4-leptons (low stats.)
 - BDTs against tt
 + jets (1l+2 τ_h) and tt
 + jets + tt
 + V (2 leptons same-sign, 3 leptons has MEM as input)

ttH multilepton: analysis strategy (ATLAS)

• MVA discriminant trained against main backgrounds

- 2ISS: $t\bar{t}H$ vs $t\bar{t}+jets$ and $t\bar{t}H$ vs $t\bar{t}+V$
- 31: 5-dimensional multinomial BDT: $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t} + jets$, VV
- τ channels: ttH vs tt + jets
- 4I: ttZ

tTH multilepton

ttH multilepton: analysis strategy (ATLAS)

- MVA discriminant trained against main backgrounds
 - 2ISS: $t\overline{t}H$ vs $t\overline{t}+jets$ and $t\overline{t}H$ vs $t\overline{t}+V$
 - 31: 5-dimensional multinomial BDT: $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t} + jets$, VV
 - τ channels: ttH vs tt + jets
 - 4l: tītZ
- \bullet Discriminating variables: BDT in all regions, except 4 leptons and 3 leptons + 1 τ_h

- Limited by non-prompt lepton estimation and τ identification, jet energy scale and resolution, ttH and tt + V modelling
- Several channels limited by statistics

tTH multilepton

ATLAS tTH(ZZ ^ \rightarrow 4/), 80 fb^{-1} $_{arXiv:1806.00425,\;sub.}$ PLB

- Improved sensitivity: separate leptonic and hadronic categories with BDT (for hadronic)
- No event was observed (0.45 expected) \rightarrow Very statistically limited!
- 1.2 σ expected

$\mathsf{t\bar{t}H}(\gamma\gamma)$

arXiv:1804.02610

• Clear signature coming from the photons

- Higgs boson can be reconstructed as a narrow peak
- Backgrounds estimated from sideband regions
- Dedicated tteriglobal H $\rightarrow \gamma\gamma$ analysis
- tt hadronic and leptonic channels
 - Hadronic tt decay: MVA is used for background rejection
- Signal extracted from fit to $m_{\gamma\gamma}$

ttH Hadronic BDT score

Events / GeV

CMS t $\bar{t}H(\gamma\gamma)$ results

- Statistically limited
- Leading systematic uncertainties: Photon shower shape and energy scale

^

$t\bar{t}H(\gamma\gamma)$

ATLAS tTH($\gamma\gamma$) results, 80 fb⁻¹ arXiv:1802.04146

- Analysis strategy: categorisation in 3 leptonic and 4 hadronic categories
- Increased sensitivity (50% for the same luminosity) by analysis improvements e.g: MVA utilizing γ and jet kinematic properties

Best-fit $\mu = 1.39^{+0.48}_{-0.42}$, at 4.1 (3.7) σ obs. (exp.) significance

ttH Combination(s)

Contributing analyses

- All of the presented $t\bar{t}H$ analyses with 2016 data
- 7 TeV (up to 5.1 fb⁻¹) + 8 TeV (up to 19.7 fb⁻¹):

Dedicated analyses targeting the bb and multilepton final states

The ttH categories of the H $\rightarrow \gamma\gamma$ analysis

Correlations between Run-1 and Run-2 analyses

- Inclusive signal theory and some background theory uncertainties correlated
- Experimental uncertainties largely uncorrelated

Phys.Rev.Lett. 120 (2018) 231801

- H $\rightarrow \gamma\gamma$ and H \rightarrow ZZ channels still limited by statistics
- Other channels dominated by systematics
- Signal theory mainly from inclusive ttH prediction
- Background theory mainly from $t\bar{t} + HF$ prediction in $t\bar{t}H(b\bar{b})$
- Experimental: lepton efficiencies, lepton mis-id, b-tagging and MC stats all important

 $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16}(\text{stat})^{+0.17}_{-0.15}(\text{expt})^{+0.14}_{-0.13}(\text{Th. bkg})^{+0.15}_{-0.07}(\text{Th. sig})$

- H $\rightarrow \gamma\gamma$ and H \rightarrow ZZ channels still limited by statistics
- Other channels dominated by systematics
- Signal theory mainly from inclusive ttH prediction
- Background theory mainly from $t\bar{t} + HF$ prediction in $t\bar{t}H(b\bar{b})$
- Experimental: lepton efficiencies, lepton mis-id, b-tagging and MC stats all important

Uncertainty source	Δ	μ
Signal theory	+0.15	-0.07
Inclusive ttH normalisation (cross section and BR)	+0.15	-0.07
ttH acceptance (scale, pdf, PS and UE)	+0.004	-0.004
Other Higgs boson production modes	+0.002	-0.003
Background theory	+0.14	-0.13
tt + bb/cc prediction	+0.13	-0.11
tt + V(V) prediction	+0.06	-0.06
Other background uncertainties	+0.03	-0.03
Experimental	+0.17	-0.15
Lepton (inc. τ_h) trigger, ID and iso. efficiency	+0.08	-0.06
Misidentified lepton prediction	+0.06	-0.06
b-Tagging efficiency	+0.05	-0.04
Jet and τ_h energy scale and resolution	+0.04	-0.04
Luminosity	+0.04	-0.03
Photon ID, scale and resolution	+0.01	-0.01
Other experimental uncertainties	+0.01	-0.01
Finite number of simulated events	+0.08	-0.07
Statistical	+0.16	-0.16
Total	+0.31	-0.26

 $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16}(\text{stat})^{+0.17}_{-0.15}(\text{expt})^{+0.14}_{-0.13}(\text{Th. bkg})^{+0.15}_{-0.07}(\text{Th. sig})$

- First observation of the ttH production process (10 April 2018)
- Observed significance is 5.2 σ (4.2 σ exp.) with respect to the $\mu_{t\bar{t}H} = 0$ hypothesis

ATLAS tTH combination arXiv:1806.00425

• 79.8 fb⁻¹ ttH($\gamma\gamma$), ttH \rightarrow 4l results combined with 36.1 ⁻¹ ttH(bb), multilepton, as well as with the Run-1 result

 $\mu_{\rm t\bar{t}H} = 1.32^{+0.28}_{-0.26} = 1.32^{+0.18}_{-0.18}({\rm stat})^{+0.21}_{-0.19}({\rm syst})$

ATLAS tTH combination

• Observation of ttH production with 5.8 σ (4.9 σ) sign. (Run-2) and 6.3 σ (5.1 σ) sign. including Run-1 (4 June 2018)

Observation of ttH production!

- Results presented for $t\bar{t}H$ searches with 36-80 fb⁻¹ of pp collision data @ 13 TeV (2016-17 data)
 - Improvements in analysis techniques compared to Run 1 (e.g. DNN, multivariate analysis ttH($\gamma\gamma$), etc)
 - $\bullet\,$ Addition of new challenging final states: fully hadronic mode, final states with hadronic decaying $\tau\,$ leptons
 - Several channels already systematic limited: Working on further improvements
- Combination resulted in the first observation of ttH production by CMS just published in PRL, ATLAS just submitted results including more 13 TeV data to PLB with larger significance
- New data being analyzed as we speak
 - More statistics helpful for developing more sophisticated strategies
 - Statistic limited channels will become more and more relevant

ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults CMS: http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/index.html

BACKUP

ttH combination + other Higgs measurements CMS-HIG-17-031

Combination of $t\bar{t}H$ analyses, along with other Higgs measurements, for 13 TeV data

- ttH +tH production cross section modifier from per-production mode fit (other production modes floating)
- Top coupling modifier from κ-framework fit with effective loops

Summary

MEM

$t\bar{t}H(b\bar{b})$: Matrix Element Method

- MEM linking a set of measured quantities (x, e.g. b-jet energy) with a set of unobservable partonic objects (y, e.g. b-quark energy) associated to a hypothesised process
- Transfer function W(x|y): likelihood that partonic configuration y is measured as x (from MC)
- Discriminant defined as the difference between the logarithms of the signal and background likelihoods

Summary

MEM

- Signal extraction via Matrix Element Methods (MEM):
 - Event-by-event discriminator build upon matrix elements, combined with reconstruction-level information

$$\begin{split} \text{Numerical} & \text{Momentum} & \text{Hesolution} \\ & \text{integration} & \text{function} \\ w(\vec{y} | \mathcal{H}) &= \sum_{i=1}^{N_{C}} \int \frac{dx_{a} dx_{b}}{2x_{a} x_{b} s} \int \frac{8}{k_{a-1}} \left(\frac{d^{3} \vec{p}_{k}}{(2\pi)^{3} 2E_{k}} \right) (2\pi)^{4} \delta^{(\mathcal{E}, \mathbf{Z})} \left(p_{a} + p_{b} - \sum_{k=1}^{8} p_{k} \right) \mathcal{R}^{(x, y)} \left(\vec{p}_{T}, \sum_{k=1}^{8} p_{k} \right) \\ & \times g(x_{a}, \mu_{F}) g(x_{b}, \mu_{F}) | \mathcal{M}(p_{a}, p_{b}, p_{1}, \dots, p_{8}) |^{2} \mathcal{W}(\vec{y}, \vec{p}) \\ & \text{Parton} & \text{LO scattering} \\ \text{functions} & (\text{Open Loops}) & \text{function} \\ \end{split}$$

Construct per-event signal/background probabilities using full kinematic information
 in an analytic approach

$$P_{s/b} = \frac{w(\vec{y}|t\bar{t}H)}{w(\vec{y}|t\bar{t}H) + k_{s/b}w(\vec{y}|t\bar{t}+b\bar{b})}$$

- tt+bb take as background hypothesis, permuting overall jet assignments
- · Works best for final states with multiple reconstructed jets

Uncertainties $t\bar{t}H(b\bar{b})$

ATLAS

- 6	,,			
	Uncertainty source	$\Delta \mu$		
C	$t\bar{t} + \ge 1b$ modeling	+0.46	-0.46	
-	Background-model stat. unc.	+0.29	-0.31	
	b-tagging efficiency and mis-tag rates	+0.16	-0.16	
	Jet energy scale and resolution	+0.14	-0.14	
	$t\bar{t}H$ modeling	+0.22	-0.05	
	$t\bar{t} + \geq 1c$ modeling	+0.09	-0.11	
	JVT, pileup modeling	+0.03	-0.05	
	Other background modeling	+0.08	-0.08	
	$t\bar{t} + \text{light modeling}$	+0.06	-0.03	
	Luminosity	+0.03	-0.02	
	Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04	
	Total systematic uncertainty	+0.57	-0.54	
($t\bar{t} + \geq 1b$ normalization	+0.09	-0.10	
-	$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03	
	Intrinsic statistical uncertainty	+0.21	-0.20	
1	Total statistical uncertainty	+0.29	-0.29	
1	Total uncertainty	+0.64	-0.61	

CIVIS			
Uncertainty source	$\pm \Delta \mu$ (observed)	$\pm \Delta \mu$ (expected)	
Total experimental	+0.15/-0.16	+0.19/-0.17	
b tagging	+0.11/-0.14	+0.12/-0.11	
jet energy scale and resolution	+0.06/-0.07	+0.13/-0.11	
Total theory	+0.28/-0.29	+0.32/-0.29	
tī+hf cross section and parton shower	+0.24/-0.28	+0.28/-0.28	
Size of the simulated samples	+0.14/-0.15	+0.16/-0.16	
Total systematic	+0.38/-0.38	+0.45/-0.42	
Statistical	+0.24/-0.24	+0.27/-0.27	
Total	+0.45/-0.45	+0.53/-0.49	

CNAC

(HIG-17-026)

(PhysRevD.97.072016)

(

Uncertainty Source	Δ	μ
tTH modelling (cross section)	+0.20	-0.09
Jet energy scale and resolution	+0.18	-0.15
Non-prompt light-lepton estimates	+0.15	-0.13
Jet flavour tagging and τ_{had} identification	+0.11	-0.09
tīW modelling	+0.10	-0.09
$t\bar{t}Z$ modelling	+0.08	-0.07
Other background modelling	+0.08	-0.07
Luminosity	+0.08	-0.06
$t\bar{t}H$ modelling (acceptance)	+0.08	-0.04
Fake τ_{had} estimates	+0.07	-0.07
Other experimental uncertainties	+0.05	-0.04
Simulation statistics	+0.04	-0.04
Charge misassignment	+0.01	-0.01
Total systematic uncertainty	+0.39	-0.30

Source	Unc. [%]	$\Delta \mu / \mu$ [%]
Lepton selection efficiency	2–4	11
τ_h selection efficiency	5	4.5
b tagging efficiency	2-15	6
Reducible background	10-40	11
Jet energy calibration	2-15	5
τ_h energy calibration	3	1
Theoretical sources	≈ 10	12
Integrated luminosity	2.5	5

Statistical methodology

Results calculated using the profile likelihood (L) ratio, q

• Exploit the asymptotic limit:

- Test statistic $q(\vec{\alpha})$ is assumed to follow a $\chi 2$ distribution with $\vec{\alpha}$ degrees of freedom
- ⇒ To determine a confidence-level (CL) interval for a single parameter α , we only need

to find the values of α where $q(\vec{\alpha}) =$ the $\chi 2$ critical value for that CL, e.g.

- 1D 68% CL at $q(\alpha) = 1.00$

ATLAS $t\bar{t}H(b\bar{b})$ selection

- *b*-tagging:
 - · Considering 4 working points: loose, medium, tight, very-tight
 - Efficiency for *b*-jets: $85\% \rightarrow 60\%$
 - Rejection factor for c-jets [light jets]: $3 \rightarrow 35$ [$30 \rightarrow 1500$]
 - b-tagging discriminant built as:

	none	loose	medium	tight	very-tight
Efficiency	-	85%	77%	70%	60%
Discriminant value	1	2	3	4	5

Channel classification:

- Two separate channels depending on the number of light leptons ($\ell = e, \mu$): 1 ℓ , 2 ℓ
- 2ℓ opposite-sign (OS) with p_T > 27, 15 GeV (veto m_{ℓℓ} ~ m_Z, and events with τ_{had})
 Require ≥3 jets and ≥2 medium b-tagged jets
- 1ℓ with $p_{\rm T} > 27$ GeV (veto events with $\geq 2 \tau_{\rm had}$'s)
 - High-p_T category:
 - 'Boosted' event: boosted Higgs and top candidates (large-R jets, reclustered from R = 0.4 jets), plus a loose b-tagged jet
 - Higgs boson candidate ($p_T > 200 \text{ GeV}$): two loose b-tagged jets
 - Top candidate ($p_{\rm T}>250$ GeV): one loose b-tagged $+\geq 1$ non-b-tagged jets
 - $\circ~$ If failing the 'boosted' selection \rightarrow 'Resolved' event:
 - Require ≥5 jets and ≥2 very-tight b-tagged jets or ≥3 medium b-tagged jets