Overview and frontiers in the hunt for Supersymmetry at the LHC

Till Eifert (CERN), Colloquium, DESY, May 2018

Outline

Motivation

Why are we looking for physics beyond the standard model? What is supersymmetry and why is it interesting?

- Searching for Supersymmetry at the LHC Brief introduction to the experimental setup. Description of a typical supersymmetry analysis.
- Overview of search program and results How robust are the exclusions?

New frontiers

complex final states and searches for rare & challenging signatures.

Outlook

Next steps in the hunt for supersymmetry.

THE STANDARD MODEL OF NDAMENTAL PARTICLES AND TERACTIO

FERMIONIS

Lep	otons spin =1/2	Quarks spin =1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
\mathcal{V}_{L} lightest neutrino*	(0-2)×10 ⁻⁹	0	u up	0.002	2/3
e electron	0.000511	-1	d down	0.005	-1/3
$\mathcal{V}_{\mathbf{M}}$ middle neutrino*	(0.009-2)×10 ⁻⁹	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
$\mathcal{V}_{\mathbf{H}}$ heaviest neutrino*	(0.05-2)×10 ⁻⁹	0	t top	173	2/3
au _{tau}	1.777	-1	b bottom	4.2	-1/3

Matter and Antimatter

Particle Processes

Motivation

	БО	20142	5	spin = 0, 1, 2	2,
fied Ele	ectroweak		Strong (c	olor	
ame	Mass GeV/c ²	Electric charge		Name	N G€
				g gluon	
N-	80.39			Higgs Bos	son
N ⁺	80.39			Name	N Ge
70	01 188			н	

0

Higgs Boson

Un

Strong Interaction Color Charge Quarks, Gluons Gluons

Learn more at ParticleAdventure.org

Unsolved Mysteries

25

60

discoveries. Experiments may even find extra dimensions of space, microscopic black holes, and/or evidence of string theory

Why is the Universe Accelerating?

Gravitational

Interaction

Mass – Energy

All

Graviton

(not yet observed)

 10^{-41}

10 - 41

Why No Antimatter?

What is Dark Matter?

Are there Extra Dimensions?

force carriers

Standard model of particle physics

"We are at a very exciting and puzzling time for particle physics." (F. Gianotti, 2018 CERN New Year presentation.)

Exciting because the LHC discovered the Higgs boson (2012), the Standard Model is complete and it works beautifully!

Puzzling because the standard model is not a complete theory of particle physics. Several fundamental questions require physics beyond the standard model.

Strong motivation to search for new physics!

Why is the Higgs boson so light?

Very large quantum loop corrections to Higgs mass in any extension of the Standard Model.

New physics cut-off

Why is the Higgs boson so light?

bare mass loop corrections measured Higgs mass $m_h^2 \approx m_{h\,0}^2 - \Delta m_H^2$ $(125 \text{ GeV})^2 = (10^{19} \text{ GeV})^2 - (10^{19} \text{ GeV})^2$

Requires extremely precise cancelation of bare mass with correction term "fine-tuning"

listening to your favorite radio needs the tuned frequency to match that of the radio channel: radio freq. = 59.05871852091501091981287962349857612 kHz

tuned freq. = 59.05871852091501091981287962349857987 kHz

Why is the Higgs boson so much lighter than the Planck mass (or GUT energy, or heavy neutrino mass scale)?

Supersymmetry (SUSY):

New symmetry between bosons and fermions. For every SM particle introduce a supersymmetric partner with Δ spin=1/2.

Supersymmetry (SUSY):

New symmetry between bosons and fermions. For every SM particle introduce a supersymmetric partner with Δspin=1/2. Equal number of bosonic and fermionic states

The undiscovered particles in the Minimal Supersymmetric Standard Model (MSSM) [SUSY primer, S. Martin]

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates	
Higgs bosons	0	+1	$H^{0}_{u} H^{0}_{d} H^{+}_{u} H^{-}_{d}$	$h^0 H^0 A^0 H^{\pm}$	
			$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R$	(same)	
squarks	0	-1	$\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R$	(same)	
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$	
			$\widetilde{e}_L \widetilde{e}_R \widetilde{ u}_e$	(same)	bing noutral wing & noutral
sleptons	0	-1	$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(same)	higgsinos mix to form four
			$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ u}_ au$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ uu}_ au$	neutralinos.
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$	
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm}	
gluino	1/2	-1	\widetilde{g}	(same)	charged wino & charged
goldstino (gravitino)	$1/2 \\ (3/2)$	-1	\widetilde{G}	(same)	higgsinos mix to form four charginos.

Broken symmetry

- Otherwise, m(s-electron) = m(electron), etc.
- Several theories for supersymmetry breaking (gauge mediated, gravity mediated, etc.).
- Minimal supersymmetric standard model (MSSM):
 1 new parameter
 soft supersymmetry breaking (our ignorance!): 124 parameters

s-electron

SUSY: Lepton (L) and baryon (B) number violation allowed, proton decay

R-parity = +1 (-1) SM (SUSY) particles

(SM comes with 19 parameters)

$$P_R = (-1)^{3(B-L)+2s}$$

R-parity conservation (RPC) implies:

- eliminate B and L number violating terms,
- SUSY production only in even numbers (typically 2),
- lightest supersymmetric particle (LSP) is stable if electrically and color neutral then DM candidate, and LSP escapes detection — missing (transverse) momentum.

electron

SUSY solution to "Why is the Higgs boson so

weak scale ·

fermion and boson loops contribute with different signs to the Higgs radiative corrections; fermion-boson symmetry protects the scalar Higgs.

With SUSY:

$$m_h^2 \approx m_{h\,0}^2 + \frac{\lambda_f^2}{8\pi^2} N_c^f \left(m_{\tilde{f}}^2 - m_f^2 \right) \ln \left(\Lambda^2 / m_{\tilde{f}}^2 \right)$$

Ideally, small mass difference btw.SM and SUSY partner particles.→ Expect SUSY particles close to weak scale.Planck scale

Courtesy of Andreas Höcker

Experimental Searches at the Large Hadron Collider

Large Hadron Collider (LHC)

proton-proton (also HI) collisions Run1: 2010-2012, centre-of-mass energy 7 then 8 TeV Run2: 2015-2018, centre-of-mass energy 13 TeV

CMS

2 general purpose detectors

LHCb

ATLAS

ALICE

SUSY particle production

[NLO + NLL Tool, C. Borschensky et al]

Example squark production and decay

 $\tilde{\chi}_1^0$

jet = collimated spray of particles

$\tilde{\chi}_1^0$ — stable Lightest SUSY Particle (LSP) is **dark matter** candidate.

neutral and weakly interacting, behaves like a stable heavy neutrino that will escape the detector without being detected.

squark, SUSY partner of quark

 \tilde{q}

p

p

Candidate event picked up in 2010 dataset

All-hadronic search for squarks and gluinos

Trigger on missing transverse momentum (E_T^{miss} , H_T^{miss}) Veto events with identified electrons and muons Require several jets with high momentum, large E_T^{miss} , large effective mass $m_{eff} = \sum p_T(jets) + E_T^{miss}$ online selection, record data on tape

separate signal from background

Select events with characteristic SUSY signature and unlikely due to background. Compare event count with background prediction.

Statistical Interpretation

T. Eifert - Status & frontiers of SUSY searches - Colloquium at DESY - May 2018

$= \psi^{*}(r,t)\psi(r,t) = \sum_{n=1}^{\infty} |q_{n}|^{2} = 1$ $= \psi^{*}(r,t)\psi(r,t) = \sum_{n=1}^{\infty} |q_{n}|^{2} = 1$ $= \psi^{*}(r,t)\psi(r,t) = \sum_{n=1}^{\infty} |q_{n}|^{2} = 1$ $= \psi^{*}(r,t)\psi(r,t) = \sum_{n=1}^{\infty} |q_{n}|^{2} = \frac{t}{2}$ $= \psi^{*}(r,t)\psi(r,t) = \sum_{n=1}^{\infty} |q_{n}|^{2} = \frac{t}{2}$ $= \psi^{*}(r,t)\psi(r,t) = \sum_{n=1}^{\infty} |q_{n}|^{2} = \psi^{*}(r,t)\psi(r,t)$ $= \sum_{n=1}^{\infty} |q_{n}|^{2} = \frac{t}{2}$ Overview

Huge LHC sample of proton-proton collisions

LHC peak luminosity ~2 x 10^{34} cm⁻²s⁻¹ (design 1 x 10^{34})

 $\sqrt{s=8}$ TeV dataset (2012): 5M top quark pairs, 0.4M Higgs bosons, and would expect 2.1M (500) gluino pairs @ 300 GeV (1 TeV) mass,

 \sqrt{s} =13 TeV dataset (2015-2017): 75M top quark pairs, 4.5M Higgs bosons, and would expect 30k (90) gluino pairs @ 1 TeV (2 TeV) mass

Large SUSY search program @ LHC

ATLAS SUSY Searches* - 95% CL Lower Limits December 2017

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \text{ (compressed)} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{\chi}_{1}^{0} \text{ (compressed)} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{1} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell)\chi_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0} \\ \text{GMSB } (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \end{array} $	0 mono-jet 0 $ee, \mu\mu$ 3 e, μ 0 1-2 τ + 0-1 ℓ 2 γ γ	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2 jets 4 jets 7-11 jets 0-2 jets 2 jets	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 36.1 3.2 36.1 36.1		1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.87 TeV 1.8 TeV 2.0 TeV 2.15 TeV 2.05 TeV	$\begin{split} & m(\tilde{\chi}_{1}^{0}) < 200 \mathrm{GeV}, m(1^{\mathrm{st}} \mathrm{gen}, \tilde{q}) = m(2^{\mathrm{nd}} \mathrm{gen}, \tilde{q}) \\ & m(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) < 5 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 200 \mathrm{GeV}, \\ & m(\tilde{\chi}_{1}^{0}) < 200 \mathrm{GeV}, m(\tilde{\chi}^{\pm}) = 0.5 (m(\tilde{\chi}_{1}^{0}) + m(\tilde{g})) \\ & m(\tilde{\chi}_{1}^{0}) < 300 \mathrm{GeV}, \\ & m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 400 \mathrm{GeV} \\ \end{split}$	1712.02332 1711.03301 1712.02332 1712.02332 1611.05791 1706.03731 1708.02794 1607.05979 ATLAS-CONF-2017-080 ATLAS-CONF-2017-080
ğ med.	$\begin{array}{c} \widetilde{g}\widetilde{g}, \ \widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \ \widetilde{g} \rightarrow t t \widetilde{\chi}_{1}^{0} \end{array}$	0 0 0-1 <i>e</i> ,μ	3 <i>b</i> 3 <i>b</i>	Yes Yes Yes	20.3 36.1 36.1	F*/* scale 805 GeV ĝ	1.92 TeV 1.97 TeV	$\begin{array}{c} m(G) > 1.8 \times 10^{-4} \text{ eV}, \ m(g) = m(q) = 1.5 \text{ ieV} \\ \\ m(\tilde{\chi}_1^0) < 600 \text{ GeV} \\ m(\tilde{\chi}_1^0) < 200 \text{ GeV} \end{array}$	1711.01901 1711.01901
3 rd gen. squarks 3 direct production	$\tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0}$ $\tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm}$ $\tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm}$ $\tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0}$ $\tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow c\tilde{\chi}_{1}^{0}$ $\tilde{i}_{1}\tilde{i}_{1} (\text{natural GMSB})$ $\tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + Z$ $\tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + h$	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0-2 \ e, \mu \\ 0-2 \ e, \mu \ 0 \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1-2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b 0-2 jets/1-2 l mono-jet 1 b 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{split} &m(\tilde{x}_{1}^{0}) \!<\! 420 \mathrm{GeV} \\ &m(\tilde{x}_{1}^{0}) \!<\! 200 \mathrm{GeV}, m(\tilde{x}_{1}^{+}) \!=\! m(\tilde{x}_{1}^{0}) \!+\! 100 \mathrm{GeV} \\ &m(\tilde{x}_{1}^{+}) \!=\! 2m(\tilde{x}_{1}^{0}), m(\tilde{x}_{1}^{0}) \!=\! 55 \mathrm{GeV} \\ &m(\tilde{x}_{1}^{0}) \!=\! 1 \mathrm{GeV} \\ &m(\tilde{x}_{1}^{0}) \!=\! 1 \mathrm{GeV} \\ &m(\tilde{x}_{1}^{0}) \!=\! 1 50 \mathrm{GeV} \\ &m(\tilde{x}_{1}^{0}) \!=\! 0 \mathrm{GeV} \\ &m(\tilde{x}_{1}^{0}) \!=\! 0 \mathrm{GeV} \\ &m(\tilde{x}_{1}^{0}) \!=\! 0 \mathrm{GeV} \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \ell \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu \tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \delta \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} , h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \gamma \tilde{G} \ 1 \ e, \mu + \gamma \\ \gamma \tilde{G} \ 2 \ \gamma \end{array}$	0 0 - 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{V} m $(\tilde{\chi}_1^*)$ =n m $(\tilde{\chi}_2^0)$ =n	$\begin{array}{c} m(\tilde{x}_{1}^{0}) \! = \! 0 \\ m(\tilde{x}_{1}^{0}) \! = \! 0, m(\tilde{\ell}, \tilde{\nu}) \! = \! 0.5(m(\tilde{x}_{1}^{\pm}) \! + \! m(\tilde{x}_{1}^{0})) \\ m(\tilde{x}_{2}^{0}) \! = \! 0, m(\tilde{\tau}, \tilde{\nu}) \! = \! 0.5(m(\tilde{x}_{1}^{\pm}) \! + \! m(\tilde{x}_{1}^{0})) \\ n(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}) \! = \! 0, m(\tilde{\ell}, \tilde{\nu}) \! = \! 0.5(m(\tilde{x}_{1}^{\pm}) \! + \! m(\tilde{x}_{1}^{0})) \\ m(\tilde{x}_{1}^{\pm}) \! = \! m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}) \! = \! 0, \tilde{\ell} \text{ decoupled} \\ m(\tilde{x}_{1}^{\pm}) \! = \! m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}) \! = \! 0, \tilde{\ell} \text{ decoupled} \\ n(\tilde{x}_{3}^{0}), m(\tilde{x}_{1}^{0}) \! = \! 0, m(\tilde{\ell}, \tilde{\nu}) \! = \! 0.5(m(\tilde{x}_{2}^{0}) \! + \! m(\tilde{x}_{1}^{0}))) \\ c \tau \! < \! 1 nm \\ c \tau \! < \! 1 nm \end{array}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$	1 jet - 1-5 jets - - - - - μ -	Yes Yes - Yes - Yes - Yes	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	$\begin{array}{c c} \tilde{x}_{1}^{\pm} & 460 \ \text{GeV} \\ \tilde{x}_{1}^{\pm} & 495 \ \text{GeV} \\ \tilde{g} & 850 \ \text{GeV} \\ \tilde{g} \\ $	1.58 TeV 1.57 TeV 2.37	$\begin{split} &m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) \sim 160 \; MeV, \; \tau(\tilde{\chi}_{1}^{\pm}) = 0.2 \; ns \\ &m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) \sim 160 \; MeV, \; \tau(\tilde{\chi}_{1}^{\pm}) < 15 \; ns \\ &m(\tilde{\chi}_{1}^{0}) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ &m(\tilde{\chi}_{1}^{0}) = 100 \; GeV, \; \tau > 10 \; ns \\ &TeV \tau(\tilde{g}) = 0.17 \; ns, \; m(\tilde{\chi}_{1}^{0}) = 100 \; GeV \\ &10 < tan\beta < 50 \\ &1 < \tau(\tilde{\chi}_{1}^{0}) < 3 \; ns, \; SPS8 \; model \\ &7 < c\tau(\tilde{\chi}_{1}^{0}) < 740 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \end{split}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu\mu v \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau v_{e}, e\tau v_{\tau} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell \end{array} $	$e\mu,e\tau,\mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, μ + τ 0 4- 1 e, μ 8- 1 e, μ 8- 0 2 e, μ	- 0-3 <i>b</i> - - 5 large- <i>R</i> je -10 jets/0-4 -10 jets/0-4 2 jets + 2 <i>b</i> 2 <i>b</i>	- Yes Yes ts - b - b - -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.1	$\tilde{\mathbf{y}}_r$ 1 \tilde{q}, \tilde{g} 1 \tilde{x}_1^{\pm} 1.14 TeV \tilde{x}_1^{\pm} 450 GeV \tilde{g} \tilde{g} \tilde{g} \tilde{f}_1 \tilde{t}_1 100-470 GeV \tilde{t}_1 0.4-1	1.9 TeV 1.45 TeV V 1.875 TeV 2.1 TeV 1.65 TeV	$\begin{split} & \lambda_{311}'=0.11, \lambda_{132/133/233}=0.07 \\ & m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm} \\ & m(\tilde{\chi}_1^0)>400 \text{GeV}, \lambda_{12k}\neq 0 \ (k=1,2) \\ & m(\tilde{\chi}_1^0)>0.2\times m(\tilde{\chi}_1^+), \lambda_{133}\neq 0 \\ & m(\tilde{\chi}_1^0)=1075 \text{ GeV} \\ & m(\tilde{\chi}_1^0)=1 \text{ TeV}, \lambda_{112}\neq 0 \\ & m(\tilde{\chi}_1^0)=1 \text{ TeV}, \lambda_{323}\neq 0 \\ \\ & \text{BR}(\tilde{t}_1 \rightarrow be/\mu)>20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1710.07171 1710.05544
Dther	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
Only phen	a selection of the available many of the province of the second	ss limits on r limits are bas	new states sed on	s or	1	D ⁻¹ 1		Mass scale [TeV]	

simplified models, c.f. refs. for the assumptions made.

Large SUSY search program @ LHC

	Model	e, μ, τ, γ	/ Jets	$E_{ m T}^{ m mi}$	$\int \mathcal{L} dt$	fb ⁻¹	ocaronos for squarks and giuntos	Example diagrams
Inclusive Searches	$ \begin{array}{l} \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} (\text{compressed}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell) / \nu \nu \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{NLSP}) \\ \text{GGM} (\text{bino } \text{NLSP}) \\ \text{GGM} (\text{higgsino-bino } \text{NLSP}) \\ \text{Gravitino } \text{LSP} \end{array} $	$\begin{matrix} 0 \\ mono-jet \\ 0 \\ ee, \mu\mu \\ 3 e, \mu \\ 0 \\ 1-2 \tau + 0-1 \\ 2 \gamma \\ \gamma \\ 0 \end{matrix}$	2-6 jet 1-3 jet 2-6 jet 2-6 jet 2 jets 4 jets 7-11 je ℓ 0-2 jet 2 jets mono-j	s Yes s Yes s Yes s Yes ts Yes s Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1	q q g	jets + Er ^{miss} cascade decays often yield leptons	$p \qquad \qquad$
med.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$	0 0-1 <i>е. и</i>	3 b 3 h	Yes	36.1 36.1	õg õg	$Jets + ei/mu + E_T^{miss}$	$\tilde{g}^{\chi_{2}}$
direct production	$\begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{natural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{split}$	0 2 e, µ (SS) 0-2 e, µ 0-2 e, µ 0 2 e, µ (Z) 3 e, µ (Z) 1-2 e, µ	2 b 1 b 1-2 b 0-2 jets/1 mono-j 1 b 1 b 4 b	Yes Yes Yes -2 b Yes et Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 36.1 20.3 36.1 36.1 36.1	$ \vec{b}_1 \\ \vec{b}_1 \\ \vec{t}_1 \\ \vec{t}_1 \\ \vec{t}_1 \\ \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_2 $	jets + tau + E_T^{miss} decays to Gravitinos can yield photons	
direct	$ \begin{array}{c} \tilde{\ell}_{\mathrm{L,R}} \tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{\mathrm{L}} \nu \tilde{\ell}_{\mathrm{L}} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{\mathrm{L}} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{\mathrm{R}} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \gamma \tilde{G} \ 1 \ e, \mu + \gamma \\ \gamma \tilde{G} \ 2 \ \gamma \end{array}$	0 0 - 0 0-2 jet 0-2 <i>b</i> 0 -	Yes Yes Yes S Yes Yes Yes Yes	36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.2 20.3 36.2 36.3 36.1	$ \vec{\ell} \\ \vec{\tilde{\chi}}_{1}^{\pm} \\ \vec{\tilde{\chi}}_{1}^{\pm}, \vec{\tilde{\chi}}_{2}^{\pm} \\ \vec{\tilde{\chi}}_{1}^{\pm}, \vec{\tilde{\chi}}_{2}^{\pm} \\ \vec{\tilde{\chi}}_{1}^{\pm}, \vec{\tilde{\chi}}_{2}^{0} \\ \vec{\tilde{\chi}}_{2,3}^{0} \\ \vec{\tilde{W}} \\ \vec{\tilde{W}} $	jets + photon(s) + E _T ^{miss}	$\begin{array}{c c} p & \tilde{g} \\ & \tilde{g} \\ & \tilde{\chi}_1^0 \\ & \tilde{g}^{0} \\ & \tilde{\chi}_1^0 \\ & \tilde{g} \end{array}$
particles	$\begin{array}{l} \mbox{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \mbox{ prod., long-lived } \tilde{\chi}_1^\pm \\ \mbox{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \mbox{ prod., long-lived } \tilde{\chi}_1^\pm \\ \mbox{Stable, stopped } \tilde{g} \mbox{ R-hadron} \\ \mbox{Stable } \tilde{g} \mbox{ R-hadron} \\ \mbox{Metastable } \tilde{g} \mbox{ R-hadron} \\ \mbox{Metastable } \tilde{g} \mbox{ R-hadron}, \\ \mbox{Metastable } \tilde{g} \mbox{ R-hadron}, \\ \mbox{Metastable } \tilde{g} \mbox{ R-hadron}, \\ \mbox{Metastable } \tilde{g} \mbox{ R-hadron} \\ \mbox{Metastable } \tilde{g} \mbox{ R-hadron}, \\ \mbox{Metastable } \tilde{\chi}_1^0 \mbox{ -} \tilde{\chi}_1$	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$	1 jet - 1-5 jet - - - - - - - - - -	Yes Yes s Yes - Yes - Yes	36.1 18.4 27.9 3.2 3.2 3.2 32.8 19.1 20.3 20.3	$\begin{array}{c} \overset{\pm}{\chi}_{1} \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{1} \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{1} \end{array} \begin{array}{c} \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}_{2} \end{array} \begin{array}{c} \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{1} \end{array} \begin{array}{c} \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{2} \end{array} \begin{array}{c} \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}_{1} \\ \overset{\pm}{\chi}_{2} \\ \overset{\pm}{\chi}$	decays can yield top & bottom quarks (natural SUSY)	p q \bar{t}
RPV	$ \begin{array}{c} LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu\mu v \\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-}, \widetilde{\chi}_{1}^{+} \rightarrow W\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow \tau\tau v_{e}, e\tau v_{\tau} \\ \widetilde{g}\widetilde{g}, \ \widetilde{g} \rightarrow qq\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow qqq \\ \widetilde{g}\widetilde{g}, \ \widetilde{g} \rightarrow t\widetilde{t}\widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow qqq \\ \widetilde{g}\widetilde{g}, \ \widetilde{g} \rightarrow \widetilde{t}_{1}t, \ \widetilde{t}_{1} \rightarrow bs \\ \widetilde{t}_{1}\widetilde{t}_{1}, \ \widetilde{t}_{1} \rightarrow b\ell \end{array} $	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, $\mu + \tau$ 0 4 1 e, μ 8 1 e, μ 8 0 2 e, μ	- 0-3 <i>b</i> - 4-5 large- <i>i</i> 8-10 jets/(8-10 jets/(2 jets + 2 <i>b</i>	- Yes Yes R jets - D-4 b - D-4 b - 2 b -	3.2 20.3 3 13.3 3 20.3 36.1 36.1 36.1 36.7 36.1		jets + b-tags + (leptons) + E _T ^{miss}	^P <u><u><u>g</u></u> <u><u>g</u></u> <u><u>g</u></u> <u><u>g</u></u> <u><u>g</u></u></u>
	0							n \mathbf{N}

23

b

Large SUSY search program @ LHC

ATLAS SUSY Searches* - 95% CL Lower Limits **ATLAS** Preliminary December 2017 Dedicated search program for Example diagrams e, μ, τ, γ Jets E_{π}^{miss} $(\mathcal{L} dt [\text{fb}^{-1}])$ Model stop & sbottom production 2-6 jets 36.1 0 Yes $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 1-3 jets 36.1 mono-iet Yes $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ (compressed) 36.1 0 2-6 jets Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ t $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_1^0$ 0 2-6 jets Yes 36.1 *ее, µµ* 2 jets Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ 14 3 e. u 4 iets $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\nu\nu)\tilde{\chi}_1^0$ 0 7-11 jets Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ 36.1 pGMSB (*ℓ* NLSP) 0-2 jets 3.2 $1-2 \tau + 0-1 \ell$ GGM (bino NLSP) 2γ 36.1 GGM (higgsino-bino NLSP) 2 jets 36.1 γ Yes Gravitino LSP 0 mon Yes 20.3 top quark pair + E_Tmiss $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_1^0$ 36.1 0 Yes 0-1 e, µ Yes 36.1 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 0 2 b 36.1 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ Yes $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ 2 e, µ (SS) 1*b* Yes 36.1 ñ1 and more complex signatures $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 0-2 e, µ 1-2 b Yes 4.7/13.3 \tilde{t}_1 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$ 0-2 e, µ 0-2 jets/1-2 b Yes 20.3/36.1 mono-iet 36.1 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ 0 Yes $\tilde{t}_1 \tilde{t}_1$ (natural GMSB) 20.3 $2 e, \mu (Z)$ 1*b* Yes $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ 36.1 $3 e, \mu (Z)$ 1*b* Yes \tilde{t}_2 $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ 1-2 e, µ 4 b Yes 36.1 ĩ, $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 2 e, µ 36.1 Yes 0 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$ 2 e, µ Yes 36.1 0 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0, \tilde{\chi}_1^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu})$ 2τ Yes 36.1 Dedicated search program for electroweak production: $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L \nu \tilde{\ell}_L \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu}\nu)$ 3 e, µ 0 Yes 36.1 $\tilde{\chi}_1^{\pm}, j$ EW 2-3 e,µ $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$ charginos, neutralinos, sleptons $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma$ e, μ, γ 0-2 b Yes 20.3 $4 e, \mu$ $\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{\mathrm{R}}\ell$ 20.3 Yes 0 20.3 Ŵ GGM (wino NLSP) weak prod., $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$ $1 e, \mu + \gamma$ Yes W36.1 GGM (bino NLSP) weak prod., $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$ 2γ Yes Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Disapp. trk 1 jet Yes 36.1 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^{\pm}$ dE/dx trk Yes 18.4 pStable, stopped g R-hadron 1-5 jets 27.9 0 Yes $\tilde{\chi}_1^{\pm}$ Stable g R-hadron 3.2 trk di-boson + E_Tmiss Metastable g R-hadron 3.2 dE/dx trk displ. vtx Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ Yes 32.8 1-2 μ GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ 19.1 GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes 20.3 and more complex signatures 20.3 displ. $ee/e\mu/\mu\mu$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$ LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ 3.2 εμ,ετ,μτ -Bilinear RPV CMSSM 2 e, µ (SS) 20.3 0-3 hYes $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow eev, e\mu v, \mu \mu v$ 4 e,μ Yes 13.3 p20.3 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau v_e, e \tau v_\tau$ $3 e. \mu + \tau$ Yes 0 4-5 large-R jets 36.1 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 36.1 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 1 *e*, μ 8-10 iets/0-4 *b* Z $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ 1 e.u 8-10 jets/0-4 h 36.1 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 iets + 2 b36.7 0 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$ $2 e, \mu$ 2h36.1 ĩ, 0 20 20.3 **Other** Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ Yes 10⁻¹ phenomena is shown. Many of the limits are based on

Lar e SUSY search program @ LHC

Large SUSY search program $@_{P_R} = (-1)^{3B+L} g_s = (-1)^{3(B-L)+2s} C$

Frontiers

Complex final states and searches for rare & challenging signatures

From *R*-parity conserving to *R*-parity violating

Exclusion summary for gluino searches in **RPC** SUSY (with E_T^{miss}) scenarios

target prompt decays to jets + $X + E_T^{miss}$

Exclusion summary for gluino searches in **RPV** SUSY (without E_T^{miss}) scenarios

target prompt decays to jets or leptons

From *R*-parity conserving to *R*-parity violating

From *R*-parity conserving to *R*-parity violating

T. Eifert - Status & frontiers of SUSY searches - Colloquium at DESY - May 2018

Characteristic observables

From *R*-parity conserving to *R*-parity

ATLAS-CONF-2018-003

R-hadron scenario

Frontier: Low rates

Production cross section of SUSY particles w/o color charge, **electroweak production**

Compressed electroweak spectrum

Dark matter: co-annihilation is compression

Naturalness requires Higgsinos near weak-scale

Higgsinos realised as multiplet of neutralinos & charginos

 $\Delta m = \text{few hundred MeV}$ -

Challenge to reconstruct intra-Higgsino soft decay products

Strategy: initial-state-radiation (ISR)

Guidice et al [1004.4902], Gori et al [1307.5952], Han et al [1401.1235], Baer et al [1409.7058], Barr et al [1501.02511]...

Adopted by ATLAS [1712.08119] and CMS [1801.01846] 13 TeV, 36.1 fb-1

Sketches by Jesse Liu

T. Eifert - Status & frontiers of SUSY searches - Colloquium at DESY - May 2018

Detector challenges

Inspecting data

Signal has kinematic endpoint $m_{ll} < \Delta m(\chi^{0}_{2}, \chi^{0}_{1})$

Ultra compressed spectrum

Journal of High Energy Physics, Volume 2003, JHEP03(2003)

Disappearing track

Hadronic recoil (ISR), trigger!

Experimental challenge: *pileup*

Many *pp* interactions (i.e. collisions) in the same bunch crossing = pileup.

Average of 38 collisions per crossing in 2017.

Many charged soft particles that leave hits in inner-detector. Challenge for disappearing track (random hits bkg), and many other areas!

High pileup event display

ATLAS 2017 collision data event with **two Z-boson** candidates each decaying to two muons and originating from well separated *pp* interactions in the same LHC bunch crossing. The production vertices of the two Z boson candidates are separated by 67 mm.

Hadron collider extends nearly 20 years old LEP limits

Outlook

Next steps in the hunt for supersymmetry.

SUSY comes with Dark Matter WIMP

Neutralino dark matter: composition controls relic abundance

Bino dark matter annihilation suppressed, other processes ensure $\Omega_{\tilde{\chi}_1^0} \leq \Omega_{CDM}^{Planck}$

Higgsino & wino dark matter bands: mass controls abundance $\Omega_{\tilde{\chi}_1^0} h^2 \sim \langle \sigma v \rangle^{-1} \sim m_{\tilde{\chi}_1^0}^2$

Barr & Liu [1608.05379]

Well Tempered Neutralino

Projected limits from **DM indirect** detection experiments scaled by current limit is scaled by factors of 10, 100 and 1000, with high to low opacity.

For large μ values direct detection quickly becomes ineffective.

Complementarity of dark matter programs

Estimates of future LHC sensitivity at 95% CL

	~35 ifb 13 TeV	Run2 (140 ifb) 13 TeV	Run3 (~300 ifb) 13/14 TeV	HL-LHC (3000 ifb) 13/14 TeV
gluino	2 TeV (prel.)	~2.3 TeV (my est.)	2.4 TeV (upgrade), 2.4/2.6 TeV (my est.)	2.9 TeV (upgrade), 2.9/3.1 TeV (my est.)
squark (x8) decoupled	1.5 TeV (prel.)	1.75 TeV (my est.)	1.9/2.0 TeV (my est.)	2.3/2.4 TeV (my est.)
stop	1-1.1 TeV (prel.)	~1.3 TeV (my est.)	1.4x TeV (my est.)	1.85 TeV (my est.)
wino C1N2 to WZ bino	~600 GeV (prel.)	670 GeV (my est.)	780 GeV (my est.), 750 GeV (CMS est.), 840 GeV (upgrade)	1150 GeV (my est.), 1.2 TeV (CMS est.), 1.1 TeV (upgrade)
wino C1C1 to WW bino	225 GeV (based on x- section ratio for 180 GeV Run1)	~320 GeV (my est.)	380-400 GeV (my est.)	~630 GeV (my est.)
wino LSP, pixel-trklet	420 GeV (prel.)	580 GeV (my est.)	680 GeV (my est.)	1030 GeV (my est.)
higgsino LSP, DM=3-20 GeV	150 GeV	200-250 GeV (my est.)	250-300 GeV (my est.)	450-500 GeV (my est.)
higgsino LSP, DM=0.3-3 GeV	?			
slepton (sel, smu)	~500 GeV (prel.)	670 GeV (my est.)		
stau	?			700 GeV (upgrade)

T. Eifert - Status & frontiers of SUSY searches - Colloquium at DESY - May 2018

Summary

Harvesting large LHC dataset

wide Supersymmetry search program; so far no clear sign of new physics.

SUSY frontiers at LHC

Complex scenarios: new clever ideas, sophisticated analysis techniques. (uncovered signatures .. long-lived, *R*-parity violating, etc.)

Electroweak SUSY production,

complementing dark matter direct & indirect detection

(analysed ~1% of the expected LHC p-p dataset)

A very exciting and puzzling time for particle physics.