Under the spell of gauge theory

Elli Pomoni

DESY colloquium 27.03.2018

Gauge theories

mass \rightarrow charge \rightarrow spin \rightarrow	$\begin{array}{cc} { }^{22.3} & \mathrm{MeVVIC}^{2} \\ { }^{2 / 3} & \mathrm{U} \\ { }_{1 / 2} & \\ & \text { up } \end{array}$		$\begin{array}{cc} { }^{2 / 173.07} \mathrm{GeV} / \mathrm{c}^{2} \\ { }^{2 / 2} & \text { t } \\ & \text { top } \end{array}$		$\underset{\substack{\text { Higgs } \\ \text { boson }}}{\text { H }}$
		```*)```	$\begin{array}{cr} \end{array}$		
	$$	$\underbrace{105}_{\text {muon }}$	$$		$\underset{0}{n}$
$\begin{aligned} & \text { n } \\ & 0 \\ & \hline \mathbf{0} \\ & \mathbf{a} \end{aligned}$	$\begin{aligned} & { }^{2.2 .2 \mathrm{ev} / \mathrm{c}^{2}} \\ & \begin{array}{l} 1 / 2 \\ \text { electron } \\ \text { neutrino } \end{array} \\ & \mathbf{D}_{\mathrm{e}} \end{aligned}$	${ }_{\substack{1 / 2}}^{\underbrace{20.17 \mathrm{MeV} / \mathrm{c}^{2}}_{\substack{\text { muon } \\ \text { neutrino }}}}$		Wi	

$\mathrm{U}(\mathrm{N})$ or $\mathrm{SU}(\mathrm{N})$ gauge group gauge bosons force carriers

Matter fields (quarks and leptons)

Feynman: how to calculate a process perturbatively:


$$
=c_{1} \lambda+
$$

$c_{2} \lambda^{2}$
$+$
$c_{3} \lambda^{3}$
$+\quad \cdots$

## Gauge theories

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{q} F_{N \nu} F^{\mu \nu} \\
& +i \bar{\psi} \phi \psi \\
& +x_{i} y_{i j} x_{i} \phi+h_{c} \\
& +\left|D_{m} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Precision tests of QED


$$
\begin{aligned}
\mathrm{g}_{\mathrm{e}} \mathrm{exp.}^{\text {en. }} & =2.0023193043617 \pm 3 \\
\mathrm{~g}_{\mathrm{e}}^{\text {th. }} & =2.00231930436 \ldots
\end{aligned}
$$

Precision electroweak/pQCD:
Very important for the search of new physics!

## A big open problem

Confinement:
Quarks cannot be isolated in Nature, and cannot be directly observed.


Find an analytic proof that quantum chromodynamics (QCD) should be confining.

## Cannot be done pertubatively

Millennium Prize Problems (\$1,000,000) 21st century analogue of Hilbert's problems

## Many big open problems

## One big question

## What is the correct description?

QCD: From quarks and gluons to baryons and mesons?


Superconductivity: Cooper pair: high-Tc?


The Nobel Prize in Physics 1998


Hall effect: composite fermions


## Emmy Noether

Symmetry $\Rightarrow$ Conservation law

Use the Symmetry to solve the problem.


The more symmetry the easier it is to solve the problem.

Gauge theories are very hard to understand:
Let's add Supersymmetry.

## Adding supersymmetry



Help understanding and solving the problem

## Supersymmetric Gauge theories in 4D

$\mathcal{N}=4 \quad$ Super Yang-Mills (SYM)
No matter fields are allowed! Only "gluons"!
Conformal: $\lambda \neq \lambda(E)$ !
More susy easier to calculate

$$
\mathcal{N}=2 \quad \mathbf{f}_{\mathbf{b}}^{\mathbf{b}}
$$

Supersymmetric QCD (SQCD)

$$
\mathcal{N}=1 \quad \mathbf{b} \leftrightarrow \mathbf{f}
$$

Less susy more realistic

The real world

## Plan of attack

## Understand non-perturbative phenomena

* Add more symmetry: supersymmetry!
* $\mathcal{N}=4$ SYM is the harmonic oscillator of our century!
* Remove supersymmetry (more realistic theories).


# Before my time 

## Symmetry alone

Can we uniquely fix the dynamics of QFT by using only symmetry plus general principles?

1960's S-matrix approach did not go far

1970's and 1980's

## The Conformal Bootstrap!

## The Conformal Bootstrap

Conformal symmetry = the scale doesn't matter!

$$
\lambda \neq \lambda(E)
$$

For conformal theories by using symmetry plus general principles we can derive an

## Infinite set of consistency relations

## Symmetry alone

Can we uniquely fix the dynamics of QFT by using only symmetry plus general principles?

1960's S-matrix approach did not succeed

## 1970's and 1980's <br> The Conformal Bootstrap!

Great success! Exactly solve 2D theories with Conformal symmetry. No supersymmetry needed!

# Did success stop only in 2D? 

## What about 4D?

## Supersymmetry + EM duality

## Duality

1D $\quad H=\frac{1}{2 m} p^{2}+\frac{k}{2} x^{2} \quad$ maps to itself $\quad \begin{aligned} x & \rightarrow \frac{p}{\sqrt{m k}} \\ & p \rightarrow-\sqrt{m k} x\end{aligned}$
Quantum mechanically: Fourier transform!

## small fluctuations $x \longleftrightarrow$ large fluctuations $p$

2D
Theory $A$ equivalent to theory $B$
elementary field $\longleftrightarrow$ soliton solution
small QM ripple


Two different descriptions of the same physics!
Intrinsically Quantum Mechanical phenomenon!

## Electromagnetic Duality

$\nabla \cdot E=0$
$\nabla \cdot B=0$
$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times B=\frac{\partial E}{\partial t}$

$$
E \rightarrow B
$$

$$
B \rightarrow-E
$$

## Electromagnetic Duality

$$
\begin{aligned}
\nabla \cdot E & =\rho_{e} \\
\nabla \cdot B & =0+\rho_{m} \\
\nabla \times E & =-\frac{\partial B}{\partial t}+J_{m} \\
\nabla \times B & =\frac{\partial E}{\partial t}+J_{e}
\end{aligned}
$$

$$
\begin{gathered}
E \rightarrow B \\
B \rightarrow-E
\end{gathered}
$$

$$
\rho_{m} \leftrightarrow \rho_{e}
$$

Where are the magnetic monopoles?

## Electromagnetic Duality

$$
\begin{aligned}
\nabla \cdot E & =\rho_{e} \\
\nabla \cdot B & =0+\rho_{m} \\
\nabla \times E & =-\frac{\partial B}{\partial t}+J_{m} \\
\nabla \times B & =\frac{\partial E}{\partial t}+J_{e}
\end{aligned}
$$

$$
E \rightarrow B
$$

$$
B \rightarrow-E
$$

$$
\rho_{m} \leftrightarrow \rho_{e}
$$

Where are the magnetic monopoles?

[Dirac 1931]
['tHooft,Polyakov 1974]
 consistent with Q.M. : $e \cdot m=2 \pi \hbar n$

The magnetic monopoles are solitons!

## Electromagnetic Duality

Together with supersymmetry it becomes powerful!

Theory A with coupling constant g is equivalent to
Theory B with coupling constant $1 / \mathrm{g}$

## Weak - strong coupling duality!

The elementary particles of A are magnetic monopoles of $B$

We can use it to solve for the low energy spectrum of theories with $\mathcal{N}=4$ and $\mathcal{N}=2$ supersymmetry!

## Electromagnetic Duality

[Seiberg 1994]
EM duality plus $\mathcal{N}=1$ supersymmetry: phase structure of $\operatorname{SQCD}$


## More can be done!



## Yet another duality!



## AdS/CFT correspondence

['t Hooft 1993, Susskind 1995]
A relation: Gravity theories in $d+1$ and gauge theories $d$-dimensions.
[Maldacena 1998]
The $4 \mathrm{D} \mathcal{N}=4 \mathrm{SYM}=10 \mathrm{D}$ string theory on

## A duality:



Use weakly coupled gravity: strongly coupled gauge theory.

Holographic models: strong coupling regime: geometry

- Confinement - Ultrahot QuarkQluonPlasma/ Ultracold atoms
strings
- Chiral symmetry breaking • Applications of Condensed matter systems


## Before the AdS/CFT

Transport coefficients in high temperature gauge theories


Small viscosity: hydrodynamic modeling of data from heavy ion collisions. In fact, maybe hydro won't work.

## After the AdS/CFT



The shear viscosity of strongly coupled
$\mathcal{N}=4$ supersymmetric Yang-Mills plasma

$$
\frac{\eta}{s}=\frac{1}{4 \pi}
$$

## Wilson Loop

$\log W(\lambda) \sim V_{q \bar{q}}(r)$
Measures the strength of the interaction between quark - antiquark

With AdS/CFT can be computed via the area of the string world sheet!


## Modern

developments

## Exact results

## Everybody was doing AdS/CFT! There were two options:

* Trying to check the AdS/CFT correspondence for $\mathcal{N}=4$ SYM
* Search for gravity duals for more realistic theories (less supersymmetry)

On the way we discovered that it is possible to obtain
Exact results for many observables

$$
c_{1} \lambda+c_{2} \lambda^{2}+c_{3} \lambda^{3}+\cdots=F(\lambda)
$$

due to: * Integrability

* Localization
* 4D/2D relations


## Integrability

$\mathcal{N}=4 \mathrm{SYM}$ is integrable in the planar limit for any coupling

* Perturbation theory: mapped to an integrable spin chain
* Strong coupling: integrable 2D theory on the string world-sheet


## Powerful integrability toolkit



- Exactly: all energies of all states for any coupling! Integrability now is applied to other observables.


## Removing supersymmetry

A long list of Observables in $\mathcal{N}=2$ theories is obtained [EP 2013] from their $\mathcal{N}=4$ counterparts by replacing: $\lambda \rightarrow f(\lambda)$

Relative renormalization: Can calculate it with Feynman diagrams
$f(\lambda)=\lambda+\lambda\left(Z_{\mathcal{N}=2}-Z_{\mathcal{N}=4}\right)$


Also, compute it exactly using localization. And check with AdS/CFT. [Mitev,EP]

Lesson: Gauge symmetry is important: not supersymmetry!

## Similar sector for $N=1$ theories

## Localization

$$
Z_{S^{4}}=\int[D \Phi] e^{-S[\Phi]}=\int d a|\mathcal{Z}(a)|^{2}
$$

The path integral localizes to an ordinary integral (Cancelations due to supersymmetry)

We can do an ordinary integral.
Compute the path integral exactly.
For any value of the coupling constant.
Example of exact observable


## 4D/2D relations

Breakthrough for theories with $\mathcal{N}=2$ supersymmetry
[Alday,Gaiotto,Tachikawa 2009] [Gadde,EP,Rastelli,Razamat 2009]

Study how different observables transform under EM duality.
Discover that this is the same as the bootstrap equation of a 2 D theory.
$4 D$ observable $=2 D$ observable

Enlarge the list of observables we can calculate exactly!

## Removing supersymmetry

Can we have $4 D / 2 D$ relations for $\mathcal{N}=1$ theories?

$$
4 D \text { observable }=2 D \text { observable }
$$

Developing a method for finding such relations.

## A large class of $N=1$ theories

* 2D symmetry algebra and representations
* Exact results for $\mathcal{N}=1$ (instantons)
* More observables
[Coman,EP,Taki,Yagi 2015]
[Mitev,EP 2017] [Bourton, EP 2017]
[work in progress]


## Summary

## Understand non-perturbative phenomena

* Add more symmetry: supersymmetry!
* $\mathcal{N}=4$ SYM is the harmonic oscillator of our century!
* Remove supersymmetry (more realistic theories).


$$
W(\lambda)=W_{\mathcal{N}=4}(f(\lambda))
$$

## Vision for the future



* No supersymmetry? With the bootstrap!
* Quantum gravity? Gauge theory provides a reformulation of QG!


## $N=4 S Y M$



## Vielen Dank für Ihre Aufmerksamkeit!

## Real world QCD

# Backup slides 

## Back to the Bootstrap

Can we only by using symmetry plus general principles uniquely fix the dynamics of QFT?


In 4D only with supersymmetry for now!
What about QCD?
[work in progress]

