

A Neutrino Detector in the Mediterranean Sea as Target for a Neutrino Beam

- Neutrino Oscillations
- The KM3NeT/ORCA Project
- Recent ORCA News
- Long-baseline Landscape
- P2O Project

A Neutrino Detector in the Mediterranean Sea as Target for a Neutrino Beam

- Neutrino Oscillations
- The KM3NeT/ORCA Project
- Recent ORCA News
- Long-baseline Landscape
- P2O Project

Neutrino Oscillations

Weak Eigenstates are superposition of mass Eigenstates

$$\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i}$$

Neutrino production via CC interaction

Neutrino detection via CC interaction

Equivalence to double slit experience

Neutrino flavour defined via charged leptons

Coherent sum

$$P(\alpha \to \beta) = |\sum_{i} U_{\beta i} \exp^{-i(E_{i}t - \vec{p_{i}}\vec{x})} U_{\alpha i}^{*}|^{2}.$$

Classic: incoherent sum

$$P(\alpha \to \beta) = \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

Neutrino mixing and oscillations

Pontecorvo - Maki - Nakagawa - Sakata (PMNS) matrix

Oscillation experiments

Nunokawa, Parke, Valle, in "CP Violation and Neutrino Oscillations", Prog.Part.Nucl.Phys. 60 (2008) 338-402.

Oscillation experiments

Appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \left| \sqrt{P_{\text{atm}}} e^{-e(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}} P_{\text{sol}} \left(\cos \Delta_{32} \cos \delta_{CP} \mp \sin \Delta_{32} \sin \delta_{CP} \right)$$
$$\swarrow \sqrt{P_{\text{atm}}} = \sin(\theta_{23}) \sin(2\theta_{13}) \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}$$

- $v_{\mu} \rightarrow v_e$ depends on:
 - CP phase: $\delta_{\rm CP}$
 - Mass hierarchy and matter effects
 - Atmospheric parameters: $\sin^2(\theta_{23})$, Δm^2_{32}
 - The smallest mixing angle: θ_{13}

Nunokawa, Parke, Valle, in "CP Violation and Neutrino Oscillations", Prog.Part.Nucl.Phys. 60 (2008) 338-402.

Possible mass pattern

- Naming/Color convention
 - Index 1, 2, 3 : increasing contribution of electron state

Electron Muon Tau

- Matter effect in sun fixes m₂>m₁
- No matter effects to measure $\Delta m_{31}^2 \rightarrow sign unconstraint$
- 2 schemes survive

Current Status

191				NuFIT 3.1 (2017)
51 52 53 52 52	Normal Ordering (best fit)	Inverted Orde	ring $(\Delta \chi^2 = 1.50)$	Any Ordering
	bfp $\pm 1\sigma$ 3σ range	bfp $\pm 1\sigma$	So rango	3σ range
$\sin^2 \theta_{12}$	$0.307^{+0.013}_{-0.012}$ 4% $0.272 \rightarrow 0.347$	$0.307^{+0.013}_{-0.012}$	$0.272 \rightarrow 0.347$	$0.272 \rightarrow 0.347$
$\theta_{12}/^{\circ}$	$33.63^{+0.78}_{-0.75}$ 2% $31.44 \rightarrow 36.07$	$33.63_{-0.75}^{+0.78}$	$31.44 \rightarrow 36.07$	$31.44 \rightarrow 36.07$
$\sin^2\theta_{23}$	$0.565^{+0.025}_{-0.120}$ 21% $0.401 \rightarrow 0.628$	$0.572^{+0.021}_{-0.028}$	$0.419 \rightarrow 0.628$	$0.401 \rightarrow 0.628$
$\theta_{23}/^{\circ}$	$48.7^{+1.4}_{-6.9}$ 14% $39.3 \rightarrow 52.4$	$49.1^{+1.2}_{-1.6}$	$40.3 \rightarrow 52.4$	$39.3 \rightarrow 52.4$
$\sin^2\theta_{13}$	$0.02195^{+0.00075}_{-0.00074} \textbf{3.4\%} 1971 \rightarrow 0.02434$	$0.02212\substack{+0.00074\\-0.00073}$	$0.01990 \to 0.02437$	$0.01971 \to 0.02434$
$\theta_{13}/^{\circ}$	$8.52^{+0.15}_{-0.15}$ 1.7% $8.07 \rightarrow 8.98$	$8.55_{-0.14}^{+0.14}$	$8.11 \rightarrow 8.98$	$8.07 \rightarrow 8.98$
$\delta_{ m CP}/^{\circ}$	228^{+51}_{-33} $128 \to 390$	281^{+30}_{-33}	$182 \to 367$	$128 \rightarrow 390$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.40^{+0.21}_{-0.20}$ 3% $6.80 \rightarrow 8.02$	$7.40^{+0.21}_{-0.20}$	$6.80 \rightarrow 8.02$	$6.80 \rightarrow 8.02$
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.515^{+0.035}_{-0.035}$ 1.4% $+2.408 \rightarrow +2.621$	$-2.483\substack{+0.034\\-0.035}$	$-2.589 \rightarrow -2.379$	$ \begin{bmatrix} +2.408 \to +2.621 \\ -2.580 \to -2.389 \end{bmatrix} $

Open Questions

- Neutrino Oscillation Experiments
 - Is CP violated in the lepton sector : δ_{CP} ?
 - Normal / inverted mass hierarchy ?
 - Is θ_{23} maximal ? If not : which octant ?
- Double Beta Decays
 - Neutrinos : Dirac / Majorana particles ?
- Beta Decays / Cosmology
 - Absolute Neutrino mass scale ?

A Neutrino Detector in the Mediterranean Sea as Target for a Neutrino Beam

- Neutrino Oscillations
- The KM3NeT/ORCA Project
- Recent ORCA News
- Long-baseline Landscape
- P2O Project

KM3NeT

KM3NeT is a research infrastructure with <u>2 main physics topics</u>:

- The origin of cosmic neutrinos (high energy)
- Measurement of fundamental neutrino properties (low energy)
- Deep Sea Observatory (Oceanography, bioacoustics, bioluminescence, seismology)

Single Collaboration Single Technology Single Management

ARCA- Astroparticle Research with Cosmics in the Abyss ORCA- Oscillation Research with Cosmics in the Abyss

KM3NeT Collaboration

Cities of KM3NeT msterdan Groningen leiden Paris Bucharest

KM3NeT Lol, arXiv:1601.07459 [astro-ph.IM] Journal of Physics G: Nuclear and Particle Physics, 43 (8), 084001, 2016

12 Countries

>40 Institutes

>220 Scientists

KM3NeT Building Block

KM3NeT Technology

ORCA Status

Phase 1: 7 string array at KM3NeT-France site to demonstrate technology/detection methods in the GeV range

Phase 2: Deploy 1 building block (115 strings)

Main Cable, 2015

Junction Box, Sept 2016

First ORCA string: Sep 2017

Neutrino Signatures

Measuring NeutrinoMassHierarchy

- Measure neutrino direction and energy
- Search for oscillation patterns from matter effects
- Requires large statistics and good energy and direction res

Lol: ORCA Oscillations

<u>KM3NeT 2.0: Letter of Intent</u> <u>http://dx.doi.org/10.1088/0954-3899/43/8/084001</u>

LOI: ORCA Oscillations

ORCA Post Lol - Tau Appearance

- 30% deviations allowed by world data
- $\approx 3k v_{\tau}$ CC events/year with full ORCA

 v_{e} -CC normalisation

1.8

1.6

1.4

.2

0.8

0.6

0.4

0.2

0 0

2

Δ

6

Rate constrained within ≈10% in 1 year ullet

1σ, **2**σ, **3**σ, **5**σ

8

A Neutrino Detector in the Mediterranean Sea as Target for a Neutrino Beam

- Neutrino Oscillations
- The KM3NeT/ORCA Project
- Recent ORCA News
- Long-baseline Landscape
- P2O Project

Deployment First Line 22/09/2017

https://www.youtube.com/watch?v=omlFkdCkbYk

Early Muon bundle

29

First Neutrino Analysis

1 month of data analysed MC : (6 v_{μ} + 1 atm. muon) Data : 7

Evt: id=3860 run_id=2609 #hits=87 #mc_hits=0 #trks=0 #mc_trks=0

2nd Line ready for deployment

Deployment of 4 lines planned around summer 2018 in a single sea operation

32

KM3NeT/ORCA as Target for a Neutrino Beam

- The KM3NeT/ORCA Project
- Recent ORCA News
- Long-baseline Landscape
- P2O Project

Neutrino Beams

- 1. accelerate protons
- 2. Shoot them on a "thin" target
- 3. Focus positive/negative secondaries (pions, Kaons)
- 4. Send them into a decay tunnel $(\pi \rightarrow \mu \nu, K \rightarrow \mu \nu)$

Comparison of LBL Projects

• Energy versus baseline

Comparison of LBL Projects

• Main Signal : Appearance of $v_e : P(v_\mu \rightarrow v_e)$

Match L and E_p

- Off-axis trick : narrow-band low energy
- Waste of beam intensity 3500 3000 0° OA2.0° NuMI off-axis event spectra ν_{μ} CC events / kton / 10^{21} p.o.t. / 0.2 GeV 80 (au) on axis 2500 70 flux 7 mrad 2000 60 MINOS-٧µ 0.8° 14 mrad 50 1500 40 OA2.5° 30E 1000 OA3.0° 20 21 mra 500 10 00 2 3 9 10 0.5 0 5 8 1.5 2 25 35 3 Ev (GeV) E_v (GeV) **NOVA** T2K

T2K recent result

- Based on 28% of 7.8 10²¹ p.o.t. (2021)
- 89 v_e -CC events + 7 \overline{v}_e -CC (22kt)
- Extension planned 20 10²¹ p.o.t. (2026)

NOVA 2018 result

- Based on 8.85 10²⁰ p.o.t. (2018 1/2 of design)
- 35 v_e-CC signal events (66 21 bckg) (14kt)
- Currently running in v mode (shutdown 2024)

DUNE

- On-Axis, 40kt LAr TPC + 1.2 MW beam
- First data 2024-2028 (?)(10 − 20 − 30 − 40 kt)

KM3NeT/ORCA as Target for a Neutrino Beam

- The KM3NeT/ORCA Project
- Recent ORCA News
- Long-baseline Landscape
- P2O Project

P2O: Protvino to ORCA

- Baseline 2588km ; beam inclination : 11.7° (cos θ = 0.2)
- ORCA position : 42° 48' 16.28" N , 06° 01' 53.06" E
- Deepest point 134km : 3.3 g/cm³
- First oscillation maximum 5.1 GeV, matter maximum 3.8 GeV

48

Protvino accelerator complex (100 km South of Moscow)

Operated by NRC «Kurchatov Institute» – Institute for High Energy Physics (IHEP), Protvino

Proton Accelerator Complex Protvino

Presentation S. Ivanov (IHEP) on 22/11/2012 @ CERN

The OMEGA project proposal

- New high intensity linac and booster synchrotron (3.5 GeV)
- 1.1 MW proton beam
- High-intensity spallation
 neutron source
- 450 kW power at 70 GeV using existing U-70 synchrotron
- A long baseline neutrino beam

Construction over 8 yr (not yet approved)

isotope production LU-400 to UNK AD pulsed ring neutron source U-3.5 LB neutrino beam line I-100 U-1.5 U-70 URAL-30 medium-energy hadron physics high-energy experimental hall hadron physics main gate Beam to ORCA will be included perimeter of technical site

Cost estimates

Table extracted from the OMEGA project Lol

Nº	Object	Cost (million rubles)	M€ (approx)
1	Linac LU-400	7 200	180
2	RC PS U-3.5	10 1 00	250
3	Neutrino channel	1 500	40
4	Near Neutrino Detector	1 000	25
5	Neutron source (target station T1)	8 400	210
6	Neutron research set-ups	1 500	40
7	Injection from U-3.5 to U-70	800	20
8	Target stations T2 and T3	800	20
9	Infrastructure	700	17
10	Total	32 000	800

Using 2013 exchange rate 40:1

Staged Approach possible

- Stage 1
 - Neutrino beam line to ORCA
 - New ion injection scheme (H⁻) : x3
 - Double cycling frequency : 9s \rightarrow 4.5s : x2
 - Intensity : 90kW cost : 100kEuro
- Stage 2
 - New Linac LU-400
 - New booster 3.5 GeV
 - Intensity : 450kW cost : 500kEuro

Possible location of the near beam detector

Neutrino Flux

Focus π^+ (Neutrino beam)

- Used for current study : IHEP Protvino internal note 2015-5
- Designed for Beam to Gran Sasso (2200km)
- Beam power 450kW → 4•10²⁰ p.o.t. per year
- Fermilab-Nova : 700kW → 6•10²⁰ p.o.t. per year

Beam optimization (work in progress)

- Red: two 3 m horns as in arXiv: 1412.0804
- Blue: target shifted towards the beam
- Black: target shifted towards the beam + horns moved further away from each other

Idea: choose the beam option which gives best sensitivity to CP violation

Effective Mass

After triggering, atmospheric muon rejection and containment cuts:

- Energy threshold determined by DOM spacing
- 6 Mton@10 GeV
- 50% Efficiency at 5 GeV

Energy Resolutions

Track

- Energy resolution better than 30% in relevant range
- Close to Gaussian

Shower/Track Identification

Discrimination of track-like and shower-like events via Random Decision Forest

At 10 GeV:

- 90% correct identification of v_e^{CC}
- 70% correct identification of v_{μ}^{CC}

Oscillation Probabilities $P(v_{\mu} \rightarrow v_{e})$

Event numbers – Neutrino Beam

Event numbers – Neutrino Beam

Modified Multi-Parameter fit

- Combined fit of nuisance and oscillation parameters
- Choice of nuisance parameters and priors inspired by LBNO study
- No neutrino/anti-neutrino skew
- No spectral index skew
- No energy scale shift

Parameter	True value	Prior	Start value	Parameter	True value	Prior	Start value
θ ₁₂	33.4°	fix	fix	Norm v _e CC	from v_{μ} CC	fix	fix
$\Delta m^2 [eV^2]$	7.53 10 ⁻⁵	fix	fix	Norm v_{μ} CC	1	0.05	1
θ_{13}	8.42°	0.15°	8.42°	Norm v_{τ} CC	1	0.10	1
θ ₂₃	41.5°	1.3°	41.5°	Norm NC	1	0.05	1
$\Delta M^2 [eV^2]$	2.44 10 ⁻³	0.06	2.44 10 ⁻³	PID	1	0.10	1
δ_{CP}	many	no	many				

Only used for CP fits, not for NMH

NMH determination

- ORCA detector, 1 year neutrino beam
- Better than 5σ for all combination of parameters

Sensitivity to δ_{CP}

- Sensitivity of measuring non-zero CP-violation, i.e. δ_{CP} different from 0° AND 180°
- After 6 years non CP-violation excluded for 35% of δ_{CP} values at about 3σ

Comparison to DUNE CDR

- <u>https://arxiv.org/abs/1601.05471</u>
- CP violation after 3 years \rightarrow ORCA comparable

Measurement of δ_{CP}

Where to go from here ?

- beam neutrinos $\leftarrow \rightarrow$ atmospheric neutrinos
 - Arrival direction known
 - Background free due to short beam spill
- \rightarrow new analysis chain to be developed
- Example : identify NC by "missing p_T "

Track Identification improvement

Assume that muons can be identified 100% above $\rm E_{th}$ Linear decrease of performance below $\rm E_{th}$

Classified as track (9m Spacing)

Different behaviour of neutrino and anti-neutrino due to difference in momentum transfer to hadronic system (Bjorken-y)

Improvement in δ_{CP} determination

Comparison of Future projects

• Advantages / challenges are complementary

Experiment	Baseline Energy	Detector	Advantages	Challenges
Dune	1300km 2.4 GeV	Liquid Ar 40 kton	Resolution Particle ID	Technology Scalability
HyperK	295 km 0.6 GeV	Pure Water 0.3 Mton	Proven concept	Cavern, phototube production
P2O	2600km 5 GeV	Sea Water 8 Mton	Low cost High statistics	Particle ID

Cross section

• Below 3 GeV uncertainty explodes

Roadmap for the international, accelerator-based neutrino programme

The ICFA Neutrino Panel

arXiv:1704.08181

4.3. Detector	Devel	lopment
---------------	-------	---------

- 4.3.7 Deep sea multi-Megaton detectors
- [106] C. Vallee, "Pacific Neutrinos: Towards a High Precision Measurement of CP Violation ?," 2016. http://inspirehep.net/record/1494807/files/arXiv:1610.08655.pdf.
- [107] J. Brunner, "Counting Electrons to Probe the Neutrino Mass Hierarchy," arXiv:1304.6230 [hep-ex].
- [108] KM3Net Collaboration, S. Adrian-Martinez et al., "Letter of intent for KM3NeT 2.0," J. Phys. G43 no. 8, (2016) 084001, arXiv:1601.07459 [astro-ph.IM].

Physics goals

The concept for a detector that exploits a large volume of sea water to produce a multi-megaton-scale detector illuminated by a powerful neutrino beam has been described in [106]. The KM3NeT collaboration is currently validating second generation, compact, modular instrumentation that is suited for the detection in sea water of neutrinos with energies of a few GeV [107, 108]. This technology would allow volumes of order tens of Megatons to be instrumented. Such a large detector located at a sufficiently long baseline (≥ 2500 km to yield a first oscillation maximum above ~ 5 GeV) would have the potential to measure oscillation parameters with high precision.

Opportunities for such programs would rely on the feasibility of a neutrino beam from, for example, Fermilab to the existing infrastructures NEPTUNE and OOI offshore of British Columbia, which have been established as deep-sea observatories; this project is referred to as the "Pacific Neutrinos" project [106]. Alternatively, a beam might be sent to the KM3NeT/ORCA detector that is being developed offshore of Toulon (see 6.1.4). To assess the potential of such configurations, quantitative studies must be performed with an optimised detector configuration. An in-situ validation of the technology with the ORCA detector should be carried out, prototypes should be deployed in NEPTUNE/OOI and an investigation of the characteristics of the deep-sea candidate sites should be carried out.

Conclusion

- Running ORCA in a neutrino beam is promising
- First high statistics long baseline experiment
- NMH determination better than 5σ after 1 year
- Neutrino/anti-neutrino mode decided rom NMH
- No need to run both polarities !
- CP phase well measured after 3 years

What next ?

- Project in transition phase : Crazy dream \rightarrow real project
- Fruitful collaboration with IHEP Protvino established
- → Strong interest from Russian site
- Various funding requests for detailed performance studies launched for 2018
 - ANR / DFG
 - Marie Curie fellowship
 - ERC
- Final goal : Letter of Intent within ~2years

P2O ←→KM3NeT

- Relation to be defined
- P2O supported in KM3Net by various groups
 - CPPM (FR), APC (FR), NIKHEF (NL), ECAP (Dt)
- Might become an independent collaboration
 - See Superk $\leftarrow \rightarrow$ T2K
- Seeking new collaborators
 - even groups which do NOT want to join KM3NeT (!)
- Possible to make significant contributions
 - Near detectors
 - Beam monitoring
 - Intensity upgrade beam
 - Super-ORCA
 - independent analysis chain

Backup

Antares Optical Module Efficiencies

- After 7 years, 20% drop (blue : HV tuning)
- Long-term operation in deep sea possible

ORCA: Oscillation Physics

Baselines and energies inaccessible to LBL or reactor neutrino experiments Very different systematics Above tau production threshold

ORCA Post LoI: Sterile, NSI, Tomography

Sterile Neutrinos

Non-Standard

Interactions

Earth Tomography

10 year sensitivity (w systematics)

Good sensitivity in $U_{\tau 4}$ mixing

Factor of two better sensitivity cf current limits from SK and IC after only 1 year of data taking ORCA sensitive to NSI effects
≈10% of the Fermi int.
Direct bounds are more than
10x larger in some cases
ORCA improves over current atmospheric scale bounds

ORCA is sensitive to N_e geophysics measure ρ_m

10 stat.+ syst. Uncertainty:5% in the whole mantle6% in the whole outer core
ORCA Improvements: Geometry+Trigger

New "MX" trigger:

Geometry:

require one local coincidence (L1) + causally connected L0 hits on adjacent DOMs trigger rate from pure noise remains marginal

ORCA Improvements: Effect on Reconstruction

Pending steps to evaluate new sensitivity : Particle ID & atmospheric muon background MC

Singles rates: ORCA1 vs ANTARES

For same sea current → less bioluminescence in ORCA cf ANTARES

85

Compass Data

Line orientation very stable over 2 months

HV Tuning

Adjust individual PMT HV to obtain predefined ToT value (27nsec)

Which Baseline to measure δ_{CP} ?

- Optimal baselines to measure δ_{CP} between 1000 km and 4000 km
- Peak energy follows initially first oscillation maximum at $(1.27 \ \Delta m_{32}^2 \ E/L) = \pi/2$ $E = 25 \ GeV \ * \ cos\theta$
- levels off at mantle resonance energy

Events after PID

δ _{CP}	0°	90°	180°	270°
tot	20386	20065	20121	20432
v _e	1021	904	1178	1294
v_{μ}	17929	17717	17506	17709
ν _τ	677	685	679	671
NC	758	758	758	758

δ _{CP}	0°	90°	180°	270°
tot	28084	27016	28188	29246
v _e	6570	5710	7142	8001
v_{μ}	13509	13270	13034	13263
ν _τ	2842	2873	2848	2818
NC	5164	5164	5164	5164

Comparison of LBL Projects

• Main Signal : Appearance of $v_e : P(v_\mu \rightarrow v_e)$

ORCA Post Lol – Dark Matter

ORCA 3 years, track+showers Competitive for Spin Dependent coupling

Neutrino Oscillations

S. Cao, PASCOS 2016

Which Baseline to measure δ_{CP} ?

• Consider peak energy of $P(v_{\mu} \rightarrow v_{e})$

Approximation : $P(v_{\mu} \rightarrow v_{e}) = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{32}^2 E/L)_3$

NOVA 2016 result

- Based on 6.05 10²⁰ p.o.t. (2016 1/3 of design)
- 25 v_e-CC signal events (33 8 bckg) (14kt)
- Currently running in v mode (shutdown 2024)

DUNE

- On-Axis, 40kt LAr TPC + 1.2 MW beam
- Measuring 2nd oscillation maximum at 0.8 GeV ?

