

Lepton universality tests with tree-level semileptonic decays

Mika Vesterinen University of Oxford DESY colloquium 24-25 April 2018

- I. Introduction to B physics and LHCb
- 2. LHCb tests of Lepton Universality in tree decays
- 3. Future prospects

Searching for new physics beyond the SM

Direct: Sensitivity to heavier BSM scales requires higher **energy**

Indirect: Sensitivity to heavier BSM scales requires higher precision

Indirect example

Indirect example

How to see...

...a measurable effect of a tiny BSM amplitude that is inversely proportional to the BSM mass scale?

Focus on processes/observables for which

- SM contribution is suppressed,
- and can be precisely computed.
- Experiments can reach high precision.

Quark flavour mixing

 V_{CKM} is hierarchical => SM amplitudes suppressed. (V_{CKM} is also the sole source of CPV in the SM*) V_{CKM} must be unitary => testability.

*For SM with $\theta_{QCD} = m_v = 0$

Quark flavour mixing

 V_{CKM} is hierarchical => SM amplitudes suppressed. (V_{CKM} is also the sole source of CPV in the SM*) V_{CKM} must be unitary => testability.

*For SM with $\theta_{QCD} = m_v = 0$

Quark flavour mixing

V_{CKM} is hierarchical => SM amplitudes suppressed. (V_{CKM} is also the sole source of CPV in the SM*) V_{CKM} must be unitary => testability. $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

*For SM with $\theta_{QCD} = m_v = 0$

The Unitarity Triangle today

11

The SM CKM mechanism is the leading source of quark flavour mixing.

We are nowhere near exhausting the potential BSM sensitivity of quark flavour.

BaBar and Belle

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow BB$

BaBar 1999-2008 ~500 million BB

Belle 1999-2010 ~800 million BB

Later I will mention Belle-II, which will collect ~50x more luminosity during 2018-2024

The LHC

The LHC

The LHC

Current dataset ~1012 b hadrons

Lepton universality in the SM

Couplings of above vertices are invariant under exchange of lepton generation.

Tested in W and Z decays at LEP,

Kaon and pion decays, τ and μ lifetimes...

LU tests with b decays

 $R(D^{(*)})$ T versus μ , e ratios

 $R(K^{(*)})$ $\mu\mu$ versus ee ratios

LU tests with b decays

 $R(D^{(*)})$ T versus μ , e ratios

Focus of my talk

 $R(K^{(*)})$ $\mu\mu$ versus ee ratios

Covered in recent DESY colloquium by Johannes Albrecht

Jargon buster — D^*

 $D^{+,0}$ mesons — spin 0

Jargon buster — D^*

Jargon buster – D^*

SM predictions: $R(D) = 0.300 \pm 0.008$ $R(D^*) = 0.252 \pm 0.003$

PRD 85 094025 (2012)

24

$R(D^{(*)})$ at B factories

The problem is the background...

$R(D^{(*)})$ at B factories

В

B

If only we knew the momentum of the B...

Tagging efficiency

- ~ few x 10⁻³ for full reconstruction
- ~ 10⁻² for semileptonic tag

BaBar 2012

PRL 109, 101802 $(2012)^{31}$

BaBar 2012

PRL 109, 101802 (2012)³²

Recent Belle analysis with $\tau \rightarrow \pi(\pi^0)v$

PRL 118, 211801 (2017), PRD 97, 012004 (2018)

Possible at LHCb?

In pp collisions the rest of the event doesn't provide any useful kinematic constraint.

Different approaches required.

 $*\pi - \pi - \pi - \pi + \nu X$ (excl. K_s) 36

$R(D^*)$ from LHCb

PRL 115, 11803 (2015) $\tau BR = (17.39 \pm 0.04)\%$

 $\frac{1708.08856v2}{1711.02505}$ (2017) T BR* = (14.55 ± 0.06)%
Muonic *R*(*D**) from LHCb

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\mu\nu)}$$

Muonic *R*(*D**) from LHCb (Normalisation and background) $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\mu\nu)}$

38

Muonic $R(D^*)$ from LHCb

Below we assume knowledge of the b momentum!

Try the approximation $(\gamma \beta_Z)_B = (\gamma \beta_Z)_{\text{visible}}$?

And exploit the measured B flight trajectory.

Muonic *R*(*D**) from LHCb

Other backgrounds

Double charm

Double charm

Fit in (isolated) signal region

4 coarse q² bins, and finer bins in m²_{miss}, E_{μ}. Projection of m²_{miss} in the highest purity q² bin:

LHCb muonic $R(D^*)$ result

$R(D^*) = 0.336 \pm 0.027_{\text{stat}} \pm 0.030_{\text{syst}}$

Consistent with BaBar and Belle results

 2.1σ above the SM prediction

First LHCb analysis with B_c decays

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \,\tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \,\mu^+ \nu_\mu)}$$

SM predictions for $R(J/\Psi)$ lie in the range 0.25–0.28.

First LHCb analysis with B_c decays

Short B_c lifetime No flying charm hadron

$R(J/\Psi) = 0.71 \pm 0.17_{stat} \pm 0.18_{syst}$ Higher than the predictions, but within 2σ

LHCb $R(D^*)$ with $\tau \rightarrow \pi \pi \pi \pi (\pi^0) v$

▲ No b → cµvX background▲ Mass peaks in the backgrounds $▲ Only one v from <math>\tau$ decay vertex

ππ

LHCb $R(D^*)$ with $\tau \rightarrow \pi \pi \pi \pi (\pi^0) v$

B/S ~ 10²

B/S ~ 10²

B/S ~ 10²

Detached vertex method

Double charm background

 $D_s \rightarrow 3\pi X$ dominated by various modes with intermediate $\eta^{(l)}, \omega, \rho$, etc...

Some measured, some not...

Also contributions with *D***D*+*X*, *D***D*⁰*X*...

The anti-double-charm BDT

The anti-double-charm BDT

D_s enriched control region

Controlling the double-charm

Controlling the double-charm

Normalisation

Actually measure
$$\frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} 3\pi)}$$

And use external measurements of $B(B \rightarrow D^* 3\pi)$ and $B(B \rightarrow D^* \mu v)$ to get $R(D^*)$.

Benefit from a new (2016) measurement of $B(B \rightarrow D^* 3\pi)$ from BaBar. PRD 94 (2016) 091101

 $B(B \rightarrow D^* 3\pi) = (0.726 \pm 0.011 \pm 0.031)\%$

Normalisation

The result

$B(D^*\tau\nu)/B(3D^*\pi) = 1.93 \pm 0.13_{\text{stat}} \pm 0.17_{\text{syst}}$ $R(D^*) = 0.285 \pm 0.019_{\text{stat}} \pm 0.025_{\text{syst}} \pm 0.014_{\text{ext}}$

Consistent with the SM and with the previous results

Contribution	Value $\%$
Simulated sample size	4.7
Signal modeling	1.8
$D^{**}\tau\nu$ and $D^{**}_s\tau\nu$ feed-downs	2.7
$D_s^+ \to 3\pi X$ decay model	2.5
$B \to D^{*-}D^+_s X, B \to D^{*-}D^+X, B \to D^{*-}D^0X$ backgrounds	3.9
Combinatorial background	0.7
$B \to D^* 3\pi X$ background	2.8
Empty bins in templates	1.3
Efficiency ratio	3.9
Total internal uncertainty	8.9
$\mathcal{B}(B^0 \to D^* 3\pi)$ and $\mathcal{B}(B^0 \to D^* \mu \nu_\mu)$	4.8

The state-of-the-art

The tension is now at the level of 4.1σ

LHCb in the near future

Further 2 fb⁻¹ is anticipated in 2018.

Given higher cross sections, and trigger improvements, Run-II typically represents a 4-5x increase over Run-I!

LHCb in the near future

 $R_{\tau\mu}$ measurements in progress with

b→u

 $\Lambda_b \rightarrow p \tau v$

etc..

SuperKEKB and Belle II

Aim to record ~50x Belle dataset by 2025!

LHCb upgrades

- Upgrade I (50 fb⁻¹)
 Full software trigger
 (5x) increase in luminosity to 2x10³³ cm⁻²s⁻¹.
- Upgrade II (300+ fb⁻¹)

Increase luminosity to $1-2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$.

Fast-timing, higher granularity and radhardness.

Summary

Do we see breaking of lepton universality in b decays?

Too early to claim any discovery, but exciting prospects from LHCb and Belle II!

Backup slides start here

R(*D*^{*}) muonic systematics

Source	$\sim \delta R_D/R_D$
Template stats	6%
Background muon mis-ID	5%
Form factors	3%
Relative efficiency	3%
Background (DDs)	1.5%
Background (combinatoric)	1%
Total	9%

Other double-charm

 $D^0 \rightarrow 3\pi X$ rate constrained w.r.t. Clean $D^0 \rightarrow K3\pi$ which has well known BR. Can't apply same approach to D⁺ since relevant BRs aren't well known. More freedom in our final fit.

D_s enriched region

Bernlocher, Ligeti, Papucci, Robinson, https://arxiv.org/abs/1703.05330

FIG. 4. The SM predictions for R(D) and $R(D^*)$, imposing (left) or not imposing (right) the QCDSR constraints (see Table IV). Gray ellipses show other SM predictions (last three rows of Table IV). The black ellipse shows the world average of the data [9]. The contours are 68% CL $(\Delta \chi^2 = 2.3)$, hence the nearly 4σ tension.

Bernlocher, Ligeti, Papucci, Robinson, https://arxiv.org/abs/1703.05330

Experiment	Method	N evts $B^{\circ} \rightarrow D^{*}\tau v$
BABAR	Leptonic_hadronic tag	245±27
BELLE	Leptonic hadronic tag	0,4x500=200
BELLE	Single pi hadronic tag	88 ±11
LHCb	3π Hadronic	1273±95

$R(J/\Psi)$ systematics

Table 1: Systematic uncertainties in the determination of $\mathcal{R}(J/\psi)$.

Source of uncertainty	Size (×10 ⁻²)
Limited size of simulation samples	8.0
$B_c^+ \rightarrow J/\psi$ form factors	12.1
$B_c^+ \to \psi(2S)$ form factors	3.2
Fit bias correction	5.4
Z binning strategy	5.6
Misidentification background strategy	5.6
Combinatorial background cocktail	4.5
Combinatorial J/ψ sideband scaling	0.9
$B_c^+ \to J/\psi H_c X$ contribution	3.6
Semitauonic $\psi(2S)$ and χ_c feed-down	0.9
Weighting of simulation samples	1.6
Efficiency ratio	0.6
${\cal B}(au^+ ightarrow \mu^+ u_\mu \overline{ u}_ au)$	0.2
Total systematic uncertainty	17.7
Statistical uncertainty	17.3

 \square

0000

00

Event 58049711 Run 153460 Wed, 03 Jun 2015 12:05:39

New result has highest statistical precision.

Naive R(D^{*}) average is 3.4σ above SM.

Naive R(D,D*) average is 4.1 σ above SM...

$$\frac{\mathrm{d}\Gamma^{SM}(\bar{B}\to D^{(*)}\ell^-\bar{\nu}_{\ell})}{\mathrm{d}q^2} = \underbrace{\frac{G_F^2 |V_{cb}|^2 |p_{D^{(*)}}^*| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2}_{\text{universal and phase space factors}} \times \underbrace{\left[(|H_+|^2 + |H_-|^2 + |H_0|^2) \left(1 + \frac{m_{\ell}^2}{2q^2}\right) + \frac{3m_{\ell}^2}{2q^2}|H_s|^2\right]}_{\text{hadronic effects}}.$$
(3)

Naive NP scale

