First results from the XENON1T dark matter experiment

Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de

Physics seminar, DESY Hamburg & Zeuthen, October 25/26, 2017

Cosmological and astronomical hints

- Cosmic microwave background
- Large scale structure-formation
- Velocity dispersion of galaxies in clusters (F. Zwicky 1933)
- Rotation velocities of stars in galaxies (V. Rubin 1978)
- Gravitational lensing (A. Einstein 1936)
- Collisions of galaxy clusters (Bullet cluster, Abell 520 and few others)

What is dark matter?

Early solutions to the missing mass problem:

- Modified gravitational theories e.g. MOND (Milgrom 1983)
 → fail/need unrealistic parameters for some observables (e.g. CMB)
- Massive astrophysical compact halo objects: MACHOS
 → not enough such objects found (MACHO Coll. 2001) & BBN

Well motivated theoretical approach:

WIMP

(Weakly Interacting Massive Particle)

- Predicted in theories beyond the standard model of particle physics
- $\bullet\,$ Correct relic density for an annihilation rate \sim weak scale
- \rightarrow Dark matter could be non weakly-interacting or a different particle!

How can we look for dark matter?

Indirect detection

Direct detection

Production at LHC

 $\chi \overline{\chi} \to \gamma \gamma, q \overline{q}, \dots$

 $\chi N \rightarrow \chi N$

 $\mathsf{p} + \mathsf{p} o \chi \overline{\chi} + \mathsf{X}$

Direct dark matter detection

Expected interaction rates in a detector

$$\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_{\chi} \cdot m_A} \cdot \int \mathbf{v} \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,\mathbf{v}) \, \mathrm{d}^3 \mathbf{v}$$

Astrophysical parameters:

• ρ_0 = local density of the dark matter in the Milky Way 'Standard' value: $\rho_{\chi} \simeq 0.3 \,\text{GeV/cm}^3$ ~ 3 000 WIMPs/m³

• $f(\mathbf{v}, t)$ = WIMP velocity distribution, $\langle \mathbf{v} \rangle \sim 220 \text{ km/s}$

Parameters of interest:

- m_{χ} = WIMP mass (~ 100 GeV)
- σ = WIMP-nucleus elastic scattering cross section (SD or SI)

Figure from NASA

Cross sections for WIMP elastic scattering

• Spin-independent interactions: coupling to nuclear mass

$$\sigma_{SI} = \frac{m_N^2}{4\pi(m_\chi + m_N)^2} \cdot [Z \cdot f_p + (A - Z) \cdot f_n]^2$$

 $f_{p,n}$: effective couplings to p and n.

• Spin-dependent interactions: coupling to nuclear spin

$$\sigma_{SD} = rac{32}{\pi} \cdot G_F \cdot rac{m_\chi^2 m_N^2}{(m_\chi + m_N)^2} \cdot rac{J_N + 1}{J_N} \cdot [a_
ho \langle S_
ho
angle + a_
ho \langle S_
ho
angle]^2$$

 $\langle S_{p,n} \rangle$: expectation of the spin content of the p, n in the target nuclei $a_{p,n}$: effective couplings to p and n.

Detector requirements and signatures

- Requirements for a dark matter detector
 - Large detector mass
 - Low energy threshold \sim few keV's
 - Very low background and/or background discrimination

• Other signatures of dark matter

- Annual modulated rate
- Directional dependance

J. Phys. G: 43 (2016) 1. arXiv:1509.08767

Result of a direct detection experiment

 \rightarrow Statistical significance of signal over expected background?

• Positive signal

• Region in σ_{χ} versus m_{χ}

• Zero signal

- Exclusion of a parameter region
- o Low WIMP masses: detector threshold matters
- o Minimum of the curve: depends on target nuclei
- o High WIMP masses: exposure matters

$$\epsilon = m \times t$$

Direct detection experiments

Overview spin-independent results

Figures from C. Hasterok

DAMA annual modulation

- Ultra radio-pure Nal crystals
- Annual modulation of the background rate in the energy region (2 6) keV
 9.3 σ significance!

R. Bernabei, Eur. Phys. J. C73 12 (2013) 2648, arXiv:1308.5109

• No discrimination of electronic recoils from nuclear recoils

What is causing the DAMA signal?

- Results of other experiments disfavour the DAMA signal
 - \rightarrow SI/SD interpretations
 - \rightarrow XENON100 annual modulation study

XENON100, PRL 118, 101101 (2017) & arXiv:1701.00769

- Muon-flux modulates due to the changing temperature of the atmosphere: muon-induced signal? Blum, arXiv:1110.0857
 - \rightarrow but this has a different phase
- Neutrinos also modulate (due to the varying Sun-Earth distance) \rightarrow Combination of muon-induced and neutrino flux? Davis, arXiv:1407.1052
- Varying rates of background neutrons? Ralston, arXiv:1006.5255
- Experimental effect?

At low WIMP masses: cryogenic bolometers

Limits curves from CRESST, CDMS & EDELWEISS, LXe detectors and DAMIC

- \rightarrow Best sensitivities at low WIMP masses
 - CRESST scintillating CaWO₄ crystals *E_{th}* = 307 eV

CRESST, Eur. Phys. J. C76 (2016) 25, arXiv:1509.01515

ightarrow Recent MeV-DM results from a gram-scale detector $E_{th} \sim 20 \text{ eV}$ arXiv:1707.06749 (2017)

• CDMSlite germanium bolometers $E_{th} = 56 \, \text{eV}$

CDMSlite, Phys. Rev. Lett. 116 (2016) and also arXiv:1707.01632 (2017)

Spin-dependent interactions & bubble chambers

- Energy depositions > E_{th} → expanding bubble detected with cameras + piezo-acoustic sensors
- A bubble chamber filled with superheated fluid (C₃F₈) in meta-stable state

Figure from COUPP

Acoustic power (AP) and neuronal network (NN score), PICO, arXiv:1702.07666 (2017)

Teresa Marrodán Undagoitia (MPIK)

XENON1T

DESY, Oct. 2017 15 / 50

Advantages of liquid noble gases for DM searches

- Large masses and homogeneous targets
- \bullet 3D position reconstruction \rightarrow fiducialization
- Transparent to their own scintillation light

	LNe	LAr	LXe	
Z (A)	10 (20)	18 (40)	54 (131)	
Density [g/cm ³]	1.2	1.4	3.0	
Scintillation λ	78 nm	125 nm	178 nm	
lonization [e ⁻ /keV]*	46	42	64	
Scintillation [γ /keV]*	7	40	46	

* for electronic recoils

Two phase noble gas TPC

Drift field

- Electronegative purity
- Position resolution

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)
- \rightarrow Electron- /nuclear recoil discrimination

XENON experiment

- Laboratori Nazionali del Gran Sasso (Italy) below 3 650 m.w.e. shielding
- Completed: XENON100 with 62 kg active mass
- Currently taking data: XENON1T using 2 ton active mass
- Future: XENONnT with ~6 ton active mass

The XENON collaboration

Oct. 2017 19 / 50

XENON1T

XENON1T @ LNGS in Italy

XENON1T infrastructure

- Kr-distillation column,
- purification & cryogenic systems,
- storage and filling systems, ...
- $\rightarrow\,$ All installed and commissioned early 2016

The XENON1T TPC

XENON1T TPC (Sept. 2015)

TPC design

 \sim 1 m height and 1 m \varnothing 2 t LXe in the target (3.2 t total mass)

Photosensors

248 low-background Hamamatsu R11410 3-inch PMTs, EPJC 75 (2015) 11, 546

Teresa Marrodán Undagoitia (MPIK)

XENON1T

Low radioactivity sensor for XENON1T

- High QE: $\sim 35\,\%$ at 175 nm
- 30% Single PE resolution
- Sub-mBq activities in U & Th For reference: 1 Banana ~ 15 Bq in ⁴⁰K
- Low DC rates in XENON1T: $\langle R \rangle_{top} = 12 \text{ Hz} \& \langle R \rangle_{bottom} = 24 \text{ Hz}$

Detector stability and xenon purity

- LXe temperature: (177.08 ± 0.04) K
- GXe pressure: (1.934 ± 0.001) bar
- LXe liquid level: (2.5 ± 0.2) mm

- Removal of electronegative impurities below 1 ppb (O₂ eq.)
- Continuous recirculation of xenon gas through hot getters
- Evolution of the 'electron lifetime': a measure of the number of electrons lost during the drift time

Background reduction

- Nuclear recoil background: in the WIMP signal region
- Electronic recoil background: affects signal region due to leakage

Nuclear recoil backgrounds

- External neutrons: muon-induced, (α, n) & fission reactions
 - Underground location + active water Cherenkov veto
 - Material selection for low U and Th contaminations
- Neutrinos: Coherent neutrino-nucleus scattering

XENON1T, JCAP04 (2016) 027, arXiv:1512.07501

Water Cherenkov detector

- Active water-Cherenkov muon shield
- Instrumented with 84 PMTs (8" R5912)
- Trigger efficiency > 99.5 % for neutrons (muon in the water tank)
- Science run 0: no muon event in coincidence with the TPC events

XENON1T, arXiv: 1708.07051

Muon veto design, JINST 9 (2014) P11006

Material screening and selection

Inner chamber of Gator

15 PMTs inside the screening chamber

Scheme GeMPI detecor

Giove @ MPIK

- High sensitive HPGe spectrometers
- GeMPIs and Gator detectors at LGNS with \sim 10 $\mu\text{Bq/kg}$ sensitivity in U & Th
- Further detectors at MPIK shallow depth lab
- Newly developed GIOVE with 'only' an order of magnitude less sensitivity G. Heusser *el al.*, EPJC75 (2015) 11, 531
- → Selection of cleanest materials for the XENON1T detector construction XENON Collaboration (2017), arXiv:1705.01828

Background reduction

- Nuclear recoil background: in the WIMP signal region
- Electronic recoil background: affects signal region due to leakage

Electronic recoil backgrounds

- External γ 's: from natural radioactivity:
 - Suppression via self-shielding of the target
 - Material screening and selection
- Neutrinos: Elastic neutrino-electron scattering of ν from the Sun
- Internal contamination:
 - ▶ Xenon: ¹³⁶Xe $\beta\beta$ decay (T_{1/2} = 2.3 × 10²¹ y)
 - ⁸⁵Kr: removal by cryogenic distillation
 - Rn: Material selection + eventually online removal

XENON1T background during commissioning

- Lowest background level of all LXe experiments
- Krypton background reduced by online cryogenic distillation

XENON1T, Eur. Phys. J. C 77 (2017) 275

• Krypton level measured independently by RGMS Eur. Phys. J. C 74 (2014) 2746

Radon budget and its reduction

 Radon emanation measurements for material selection

miniaturized proportional counter

R&D on radon reduction

- Surface cleaning/coating
- Cryogenic distillation
 See arXiv:1611.03737 & arXiv:1702.06942
- Prediction for XENON1T: 10 µBq/kg

Demonstration of radon distillation

 \rightarrow Proof of single-stage radon distillation: R > 4

S. Bruenner et al. EPJC 77 (2017) 3, 143 arXiv:1611.03737

- XENON100 krypton distillation column operated in reverse mode without xenon loss
- $\rightarrow\,$ Two distillation runs with & without a radon source
 - Reduction factor:
 R > 27 at 95% C.L.

XENON100, EPJC (2017) 77, 358 & arXiv:1702.06942

→ Distillation also tested in XENON1T using Kr-column in reverse mode: 20% reduction on radon background xENON1T, arXiv: arXiv:1705.06655

Data exposure

• SR0: 34.2 live days acquired \rightarrow published

SR1: currently on-going, more than 150 additional live days

Calibration in XENON1T

- Electronic recoil band determined from Rn220 calibration
 Injected from a ²²⁸Th source, XENON100, arXiv:1611.03585
- Nuclear recoil (signal region) data from AmBe neutron source
- Background data (α-particles from ²²²Rn decays) used to monitor the detector response

→ Data corrections and processor performance tested on ^{83m}Kr data

Event selection and efficiencies

- Blind analysis: selection criteria defined on calibration data
- Energy range: (3 < *cS*1 < 70) PE
- Analysis volume of $\sim 1 \text{ ton}$

- Detection efficiency dominated by the 3-fold coincidence requirement
- Efficiencies calculated from control samples or from simulation

Background model

- Background modelled using calibration and science data outside the ROI
- Accidental coincidences dominate at low energies
- Radon is the main contributor above few PE

Figure from XENON1T, arXiv:1705.06655

Science data

Figure from XENON1T, arXiv:1705.06655

XENON1T first result and future sensitivity

Figure updated from XENON1T, arXiv:1705.06655 (Note than the new PandaX-II result is missing here)

Upgrade to XENONnT

- XENONnT will contain about 6t LXe in the target
- All infrastructure built already to accommodate XENONnT
- 'Only' xenon, 260 new PMTs and new TPC necessary
- Background expectation: assuming negligible material BGs
 - ER BG: 0.13 ev/t/y (dominated by solar v's)
 - NR BG: 0.23 ev/t/y (dominated by solar v's)
- Sensitivity: $1.6 \times 10^{-48} \text{ cm}^2$ for $50 \text{ GeV}/c^2$ WIMP mass
 - $\rightarrow~$ for 20 t $\times y$ exposure

Currently > 8 t of LXe purchased and missing PMTs already being delivered and measured

DARWIN: the ultimate WIMP detector

dark matter wimp search in noble liquids

DARWIN

Water Charankov shield **E**() Cryostat TPC Fiducial region Inner shield **E**() PMT Support structure

http://darwin-observatory.org/ 50t LXe total (40t in the TPC)

- R&D and design study for a liquid xenon observatory
- Design phase on-going, followed by construction and commissioning
- TPC of \sim 2.6 m diameter & 2.6 m drift length
- 7 years necessary to exploit the complete sensitivity
- Location: possibly inside the XENON1T/nT water tank

DARWIN, JCAP 1611 (2016) 017

DARWIN physics

- Goal: measure WIMP properties / ultimate cross-section sensitivity
- Neutrino physics channels become available:
 - ► Electronic recoils from solar neutrinos ~7 ev/day in 30 t and E = (2-30) keVee
 - ► 3.5 t of ¹³⁶Xe in DARWIN without isotopic enrichment
 - Nuclear recoils from coherent neutrino scattering: solar, diffuse supernova background and atmospheric v's

90 events/t/y from 8B-neutrinos above $\sim\,$ 1 keV _{ee}

Summary

Sensitivity for dark matter searches has progressed rapidly

- ► Best sensitivities by liquid xenon detectors (above few GeV/c²)
- XENON1T currently taking data!
- XENONnT and DARWIN are the future devices to investigate the dark matter properties and a wide variety of neutrino physics

The XENON100 experiment

2008	2009	2010	2011	2012	2013	2014	2015	2016
Commiss	ioning	Run I	Ru	n II	Run I		R&D	

- Taking data from 2009 2016
- 30 cm drift length and 30 cm \varnothing
- 161 kg LXe mass (34 48 kg for analysis)
- Background $\sim 5\cdot 10^{-3}\, events/(kg\cdot d\cdot keV)$
 - \rightarrow Instrument paper: Astropart. Phys. 35 (2012) 573
 - \rightarrow Analysis paper: Astropart. Phys. 54 (2014) 11
- Leading results during the last years
 - \rightarrow Spin independent result: PRL 109, 181301 (2012)
 - \rightarrow Spin dependent result: PRL 111, 021301 (2013)
 - \rightarrow Axion searches: Phys. Rev. D 90, 062009 (2014)
 - → Rate modulation: PRL 115, 091302 (2015) & update 2017: PRL 118, 101101 (2017)
 - \rightarrow Leptophilic models: Science 349, 6250 pp. 851 (2015)
 - \rightarrow Final combined results: Phys. Rev. D 94, 122001 (2016)

Data stability study

- Test of time modulation of electronic recoils of (2 – 6) keV energy
- Time span: 4 years (477 live days)
- DAMA signal excluded at 5.7 σ XENON100, PRL 118, 101101 (2017) & arXiv:1701.00769

Sensitivity evolution and prospects

Teresa Marrodán Undagoitia (MPIK)

Example of a waveform in XENON1T

Background model

	Full	Reference
Electronic recoils (ER)	(62 ± 8)	$(0.26\substack{+0.11\-0.07})$
Radiogenic neutrons (n)	0.05 ± 0.01	0.02
CNNS (ν)	0.02	0.01
Accidental coincidences (acc)	0.22 ± 0.01	0.06
Wall leakage (wall)	0.52 ± 0.3	0.01
Anomalous (anom)	$0.09\substack{+0.12\\-0.06}$	0.01 ± 0.01
Total background	63 ± 8	$0.36\substack{+0.11\\-0.07}$
$50 \text{ GeV/c}^2, 10^{-46} \text{cm}^2 \text{ WIMP}$	1.66 ± 0.01	0.82 ± 0.06

Calibration in large detectors

- Common γ-ray energies do not reach the inner volume
 → internal ²²⁰Rn can be used
- Radon is injected from a ²²⁸Th source
- Beta decay of ²¹²Pb used to define the background region
- No long lived isotopes in the ²²⁰Rn chain → LXe doesn't need to be purified
- Use of the source tested successfully in XENON100

XENON100, PRD 95, 072008 (2017) & arXiv:1611.03585

Scintillation and ionization signals in XENNO1T

