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The Brexiton (Enqvist 2017, Rajantie 2017)

2, QLT
N

e

Goes out of thermal
equilibrium then acts as
a decoupled spectator
field while it decays



Plan
 Neutrinos as background at dark matter detectors
* Neutrinos as signal at dark matter detectors
* Axion miniclusters and gravitational microlensing
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Thermal Relic Dark Matter
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Ways to Detect Thermal Relic Dark Matter -
Make, Shake and Break

Proton Dark Matter Dark Matter Dark Matter
Proton Dark Matter Nucleus Nucleus
Make — collider production Shake — direct detection scattering
Dark Matter SM Particle
Dark Matter SM Particle

Break — indirect detection of annihilation
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WIMP-nucleon cross section (cm-)
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LZ- Lux Zeplin

Instrumentation conduits

Water tank

Gadolinium-loaded
liquid scintillator veto

High voltage
feedthrough

Liquid xenon
heat exchanger

120 veto PMTs

7 tonne liquid xenon

imesprojection chambee 488 photomultiplier tubes (PMTs)

Additional 180 xenon “skin” PMTs

Figure 2.1. LZ detector concept.

Approximately 5 tons of Liquid Xenon, expands and improves on successful LUX design

Looks for ionisation and scintillation signal — should start to be installed in 2018,
commissioning begins in 2019 in Davis Cavern, Sanford, South Dakota



Coherent Neutrino-Nucleon Interactions

do GE 2 2 212
f— H
d(cos0) - Qw E, (1 +costl) F(Q7)

o Enhanced by factor N?: y y
Qw =N—(1—4sin*dy)Z~N—-008xZ~N

o cosf: angle between in- and outgoing neutrino direction

o 2m7E, = q*> =2E2(1 — cosb)

do GE mtE;
T g T ar Qv -5 F@)
A A

/ [ dN(t) do(E,.E,) JE, dt
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Coherent Neutrino-Nucleon Interactions

do G2 5 o 5
d(cos ) — BWQ ES (1 +cost) F(Q)

o Enhanced by facta

——”T/ [ dN(t drrE E.) a’E Jt

Ey
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Res. counts / 2 PE
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Observation of Coherent Elastic Neutrino-Nucleus Scattering
COHERENT COLLABORATION arXiv:1708.01294
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Observation of Coherent Elastic Neutrino-Nucleus Scattering

Abstract: The coherent elastic scattering of neutrinos off nuclei has eluded detection for four

decades, even though its predicted cross-section is the largest by far of all low-energy neutrino

Ve ry couplings. This mode of interaction provides new opportunities to study neutrino properties, and

leads to a miniaturization of detector size, with potential technological applications. We observe

GOOd this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na]
scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak
Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the
Standard Model for this process, are observed in high signal-to-background conditions.

Improved constraints on non-standard neutrino interactions with quarks are derived from this
initial dataset.

COHERENT COLLABORATION arXiv:1708.01294
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Astrophysical Neutrino Sources

X -y
The nuclear reactions in the Sun generate a numerovs amount of electron nevtrinos. While the total number of nevtrinos can be calculated very accurately, their <)
energy spectrum contains more uncertainties. The following picture shows the prncipal energy producing reaction chains: p
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Neutrino Background
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Neutrino Background

Not enough Neutrinos to be detected with COHERENT set-up
Need a much bigger detector sensitive to keV nuclear recoils
For example, a Dark Matter detector...
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Integrated Event Rate in Xe detector above different Thresholds

30

Number of neutrino events
= s & o
1 1 | | I T 1 | 1T 1 | | | 1T 1 | I 1T 1

Lh

— Xe 5 ton-year

threshold [

keV]

.



Integrated Event Rate in Ge detector above different Thresholds
(B8, hep, N13, O15, F17 and Be7 lines)

— Ge 50 kg-yr| 7

Number of neutrino events
[S—
o

| | | | I | | | | | | 1 1 11 | |
0.01 0.1 1 10
[keV]
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WIMP—nucleon cross section [cm?]

These Neutrinos create a floor...
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WIMP—nucleon cross section [cm?]

These Neutrinos create a floor...

SuperCDMS Soudan COMS-lite
SuperCDMS Soudan Low Threshold
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What if we can Tell which direction the - B e \
dark matter is coming from? I g o= TR 3 }

R ¢ GND
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DIRECTIONAL DARK MATTER DETECTION

e.g. DMTPC



angle between recoil from Solar neutrino and sun

1.0 : : : . . . 0.0

0.5¢

cos qun

cos ) =

E, 2mr arXiv:1406.5047



angle between recoil from Dark Matter and sun
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e Preferred arrival direction roughly from Cygnus A
* This changes during the year

* Lighter (heavier) dark matter more (less) directional above a given threshold

arXiv:1406.5047
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The normalised background only distribution pg(Qg) (blue) and signal
plus background distribution p;(Qg) (red) including angular information
(top) and excluding angular information (bottom) for s=10 and b=500 for
a 6 GeV dark matter particle in a CF, detector. arXiv:1406.5047




Various Effects, some of which compete with each other:-

* For Low mass DM, only fastest moving particles
will give a signal, so that points right back to
Cygnus, easy to discriminate from the Sun

* High mass DM can give a signal for DM coming
from all directions so directionality less
important, but it has an energy spectrum quite
different from solar neutrinos

* Higher energy recoil tracks have a much better
directional angle reconstruction



What about NO DIRECTIONALITY, only TIME information?

T T | | T T
Maxwellian f(v) : Maxwellian f(v)
no time information with time information
— 10-44 = 10T xenon target — 10-44 10T xenon target
Ng E Running Time 1 Ng E Running Time 1
e 2d 1 bl 2d 1
c B ays \ ] c ays \ i
o s 8 days | o 8 days l
-ld 28 days _\ "d 28 days R
s 10-45 3 ] 0 10-45 2 \
3 i 96 days /—\ 3 96 days J\
g i 323 days 9 g ]
b= I
v i i (%) ]
g | | g 323 days \/\
1] Q
v -46 O -
S 10| E 510 | -
g : - g : -
= =
(a] (a]
-47 | | | | -47 | | | |
10 2.0 50 6.0 7.0 8.0 10 2.0 5.0 6.0 7.0 8.0
Mass [GeV] Mass [GeV]

Davis arXiv:1412.1475

In principle, direction, energy and time information can discriminate neutrinos from dark matter.



Interesting Possibility — Polarised targets

Michel Borghini with a polarized target at CERN in 1976.

see also

“Dark Matter Detection with Polarized Detectors”
Chiang, Kamionkowski & Krnjaic, arXiv:1202.1807



Interesting Possibility — Polarised targets

Polarised targets not very directional for dark matter
(any effect is supressed when no preferred helicity)

Polarised targets with unpaired neutrons ARE directional to axial coupling of neutrinos
Effect usually dwarfed by vector coupling due to coherent enhancement
Notable exception is Helium-3

Following work based on Franarin and Fairbairn arXiv:1605.08727



A if N=1 and ¢, due to
A unpaired neutron

|

!

cancellation between V and

s g A for particular orientations
. %X 2 of the spin and the arrival
direction of the neutrino
do G%E?
— = L2l - 3¢ + (ci — ¢)costh + 2ca[(cy — ca)D.8 + (cy + ca)D'.8]}
d§2 1672 = .
Sl SD
nucleus __ n
cy = Zcy, + Neyy cv. e
Cnucleus _ Cunpaired nucleon Proton |1 — 4sin“Oyw | 1.26
A A Neutron -1 -1.26




do/dE, [em?GeV—1)

6.4 MeV Neutrino-nucleon cross section as function of angle

For Xenon there is a small effect while for Helium-3 there is almost a complete cancellation.
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Some obvious problems with Helium-3

* Tritium contamination would be a major background

e Simplest Polarisation scheme for He-3 for NMR

uses potassium and/or rubidium, both of which -

are potential contaminants *He |0.97
13
41
* Helium-3 makes Xenon look as cheap as water €0
) ) 1N 10.36
o — 1 dgr (0) déi () 195 | .99
o do

2| ap, (7/2) 129% 6] 0.04




There are therefore ways of beating down the neutrino background,
but they are difficult.

Many of them might only be well motivated if there is evidence from
elsewhere of a dark matter particle in a certain mass range.



Some detectors which will come online in the next years

Darwin
Proposed 40(ish) ton Xenon experiment.

One suggested timeline is that construction begins 2020-ish. Was originally going to
have a liquid Argon detector with it but that will now be separated off.



We expect to detect Neutrinos. What could we do with this information?

Experiment € (ton-year) FEip ., (keV) FEipo (keV) Frae (keV) R(pp) R(°B)
G2-Ge 0.25 0.35 0.05 50 - 62 — 85|
G2-Si 0.025 0.35 0.05 50 - 3 - 3]
G2-Xe 25 3.0 2.0 30 2104 — 2167 0 — 64]

Future-Xe 200 2.0 1.0 30 17339 — 17846] [520 — 10094]
Future-Ar 150 2.0 1.0 30 14232 — 14649] [6638 — 12354]
Future-Ne 10 0.15 0.1 30 1141 — 1143]  [898 — 910]

arXiv:1604.01025



We expect to detect Neutrinos. What could we do with this information?

Can measure the Weinberg angle at very low energies

Exp. iB QLY sin’ Oy
Measured | 2.0% *® 10.6 %"

G2 |1.9% (1.9%) 2.5 % (2.5%) 4.6% (4.5%)
Future-Xe|1.8% (0.9%) 0.7% (0.7%) 1.7% (1.7%)
Future-Ar |1.0% (0.6%) 0.6% (0.5%) 1.5% (1.4%)
HyperK® 1.43% - —

Measure Boron-8 flux using nuclear recoils and pp flux using electron recoils

arXiv:1604.01025



We expect to detect Neutrinos. What could we do with this information?

Limits average opacity vs. metallicity
Narrows line but still huge degeneracy

Needs to be broken by observation of S
CNO neutrinos —

SNO+ ???

Future direct detection experiments ??7?
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0.02 }
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-0.08

- = Current observations

- [ Future Xe -
Future Ne \
I T BT R B B .\."'" 3
0.017 0.018 0.019 0.02 0.021 0.022 0.023
Z/X

arXiv:1604.01025



Tests of BSM Physics

Momentum exchanged for pp-neutrino electron events is around 10 keV
Momentum exchanged for neutrino-nucleon events is about MeV scale

Both Q¢ unstudied in those settings, can probe new interactions.



Tests of BSM Physics

Nror [ton™ l yr- l ]
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Darwin would also be sensitive to Neutrinoless Double Beta Decay
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Doesn’t seem possible to measure Diffuse Supernova Neutrino Background even with Darwin
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Observing a local supernova with DM detectors

Should be easily possible
(see e.g. Lang, McCabe et
al 1606.09243)

Question is, can we do new
fundamental physics with
such observations?

Detection significane [0]

30
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Mixing with Sterile Neutrino during Supernova Explosion

4 Ve,

0 Ne

Normal hierarchy

At the first resonance:
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TEMPERATURE MASS ANGLE

FLUX

Sensitivity of Hyper-K and Darwin to Sterile mixing from Supernova at 10 kpc

for eV neutrino with

10 degree mixing angle

Hyper-K
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Solar Abundance Problem

Helioseismology measures the speed of sound of the
sun as a function of depth.

" SFI-GS98

'Ry, =0.713  Y,=0.243

0.015
| SFII-AGSS09met R,,=0.723 Y =0.232
“SFI-CO’BOLD R_,=0.717 Y =0.23
c 0.010 i
(Howe) © R e
é, - 7
? 0.005 [ =
0.000 [ Frnssnsen e e St
Discrepancy between the observed speed of sound from | TR
helioseismology and that inferred by the models with I
the same metallicity as that observed at the surface. -0.005
0.0 0.2 0.4 0.6 0.8 1.0

R/Ry,  Serenelli, arXiv:1601.07179

sun

OBSERVING CNO NEUTRINOS WOULD HELP WITH THIS



Neutrino Background
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CNO neutrinos would be =™ 102
very difficult for a Darwin :
like experiment...
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Events / [10 keV X 400 tonne x yr]

222R_n

Low Metallicity

Future Argon Detectors could detect CNO neutrinos Activity  o("Be) o (pep) o(CNO)
Using electron Recoils (Franco et al. arXiv:1510.04196) 10 1.77 £0.01 84 +0.1 16.7+0.1
20 1.80 £0.01 87x01 17.0x0.1
40 1.82 £0.01 93+x01 17.9+0.1
60 1.84 £0.01 9701 18.6%+0.1
30 1.85 £ 0.01 10.04+ 0.1 19.6 + 0.1
3 s MC Data o o L ) o )
10° = — all 100 1.87 £ 0.01 10.54£ 0.1 20.0 £ 0.1
— — Be-v. 200 1.96 £ 0.01 121 £ 0.1 23.2+0.2
- — CNQ -V
: Eep-v
— B-V
102 - BZP
E == : = Radon
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Neutrinos will be detected very soon by Dark Matter Detectors

This will already on its own be new physics, will also probe regions of
parameter space not probed by other experiments

Potential for BSM and solar physics as well as DM

e_o [e]
,o.. .......

Science & Technology I RX I
@ Facilities Council ::'}.e rc




Part Il

Detecting Axion Mini-clusters through Microlensing

Science & Technology RN RX X
@ Facilities Council ::.:..erc




Axions as Dark Matter What is this?

~ 4 VL, UL G
S = /d l-[ 4{;d( Gy, + 10Dy + Mz
Gluon kinetic energy guark kinetic energy guark mass

2,2
ik

el gl

., —~

a lcg

Promote @ to field a

Re(4) |

Also induces coupling to photons
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Here you can get good dark matter, but
generically you get too many isocurvature
perturbations if PQ symmetry was broken
before inflation (although see Hogan,
Fairbairn and Marsh and Ballesteros et al
for ways around this.)
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Can also get good relic abundance if PQ

KV symmetry broken after inflation.
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What Happens Step by Step

. PQ phase transition after inflation — lots of different values in different
regions

. Field smooths itself out on horizon scale in the style of Kibble Mechanism
. Axion acquires a mass, leading to big over-densities from place to place

. Field now collapses to form (very) dense miniclusters with typical mass
equal to that inside horizon

. All of these isocurvature perturbations physics occurs on very small scales,
on large scales they fall into adiabatic perturbations

. We then try to observe the small scale miniclusters today with lensing



U(1) PQ symmetry broken by axion mass after inflation

Relic abundance then set by different value of the axion field in different regions of the Universe

Generic answer (from particle data group) is given by

41 peV
ma

1.19

Orelp? ~0.11

On its own suggests that the axion mass is about 40 micro-eV but there is a range over perhaps
a couple of orders of magnitude because the contribution from the decay of topological defects
Is uncertain.

Correlations in this field are on length scale of horizon at phase transition — very small- much
smaller than cosmological Planck/galaxy scales etc.



Axion Photon coupling g,,,[GeV']
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U(1) PQ symmetry broken by axion mass after inflation

4 T 3 Mass inside horizon = M,
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Simulations: Kolb & Tkachev (1990s)

See also Zurek et al (2007); Hardy (2016)
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Fraction of MCs with density
Minicluster formation simulated ©: 3 3
without gravity or phase pe = 14007 (1 4 §)pa (1 + 2eq)

transition.

The fraction of DM in miniclusters, f,,c, IS hot predicted.
Our goal: constrain f,,- observationally.




source lens observer
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Subaru Hyper Suprime Cam (HSC) —

1.5 degree coverage on sky, can cover whole of :
Andromeda Galaxy (M31) ’ o e — . '

Blue patches excluded due to too many objects
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D1 representative of inner disk

batch-T}2
D2 outer disk .
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Niikura et al, 1701.02151




Subaru Hyper Suprime Cam (HSC)

Has only collected 7 hours of data — already has very strong constraints on lensing events

Good stacked image representative target image difference — change in one star’s flux



Stellar
flare?

Eclipsing

Binary?

Subaru Hyper Suprime Cam (HSC)
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HSC constraint on Primordial Black Holes Niikura et al, 1701.02151
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Magnification in the point mass vs. the extended mass case

Most haloes are very diffuse and therefore cause no lensing

Magnification for a distributed source
p=[1-B)(1+B-0C)"

1 dM(r) B M(r) ¢*Dg

C J— N EC p—
Y.mr  dr Y.mre ArGDi1r Drg

We have distributed density which, while dense, is not a point mass.
For each halo we need to integrate inwards to find value of r where 1=1.34.

In practise the corresponds to outer image having magnification of 1.17.



Effective diameter / Einstein diameter

Most haloes are very diffuse
and therefore do not cause
enough lensing
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Upcoming Surveys - many of which are much better than HSC

=
A

PTF/APTF, 7.3 deg? ZTF, 47 deg? LSST, 9.6 deg?

——+—1 deg



Dark Matter Searches are no place for Dogma.

Could be WIMPs, sterile neutrinos, axions, hidden sector glueballs, KK
particles, whatever....

Whenever we come up with an idea to test one of these we should do
so. There will be lots of new ways to test these scenarios in the
coming Years...

o o °
« *0g000004°

Science & Technology SR
@ Facilities Council ',-:.;?.%e rc




