Axions from the Sun?

Exploring the low-energy frontier with the International Axion Observatory IAXO

K. Desch University of Bonn DESY Seminar 04/07/2017

Is the Standard Model complete?

Particles of the Standard Model

Is the Standard Model complete?

Do we understand stars and radiation in the Universe?

 $1T \stackrel{\circ}{=} 300 \text{ MV/m}$

Vision: Axions from the sun?

Neutrino image of the Sun [Superkamiokande]

2025: Axion image of the sun???

Outline

- Five reasons to like Axions
- Axions and ALPS: What are they?
- Axions and ALPS: How to find them?
- International Axion Observatory IAXO

Axions...

1. ... may solve the strong CP problem

QCD allows for:
$$\mathcal{L}_{CP} = -\frac{\alpha_s}{8\pi} \left(\theta - \arg \det M_q \right) \tilde{G}_{\mu\nu} G^{\mu\nu}$$

 $\overleftarrow{\theta} \in (0, 2\pi)$

 $\begin{array}{ll} \mbox{induces non-zero neutron EDM:} & d_n \approx \bar{\theta} \ 10^{-16} \ \mbox{e cm} \\ \mbox{measurement} & d < \ 0.30 \times 10^{-25} \ \mbox{e cm}, \ \mbox{CL} = 90\% \\ \hline \bar{\theta} \ \lesssim 10^{-10} & \mbox{extreme fine tuning } \end{tabular}$

Axions...

- 1. ... may solve the strong CP problem
- 2. ... may be the Dark Matter

[Redondo]

Despite their small mass, axions are viabale Dark Matter candidate Non-thermal production → non relativistic Abundance depends on details of early universe physics 😞

Axions...

- 1. ... may solve the strong CP problem
- 2. ... may be the Dark Matter
- 3. ... may explain TeV transparency

[Horns, Meyer; Troitsky; ...]

Axions and/or ALPS

- 1. ... may solve the strong CP problem
- 2. ... may be the Dark Matter
- 3. ... may explain TeV transparency

4. ... may explain anomalous star cooling

HBAyala et. al. (2014), Straniero (proc. of XI Patras Workshop)RGViaux et. al. (2013), Arceo-Daz et. al. (2015)WDLF (
$$M_{Bol} \sim 9$$
)Bertolami (2014)PG 1351Corsico et. al., (2014, 2015), Battich et. al. (2016)G117-B15Aal., (1991) + many othersR 548Corsico et. al., (2012)L19-2 (113)Corsico et. al., (2016)L19-2 (192)Corsico et. al., (2016)NSShternin et. al. (2011)-10123 $\Delta L/L_{st}$

M.G., Irastorza, Redondo, Ringwald (2015); M.G., Irastorza, Redondo, Ringwald (in preparation)

some stars appear to cool down faster than expected from standard stellar evolution

$$(A) \sim \frac{1}{2} \chi \left(\theta_{\rm SM} + \frac{A}{f_A} \right)^2 \quad \langle A \rangle / f_A = -\theta_{\rm SM}$$

Axions...

- 1. ... may solve the strong CP problem
- 2. ... may be the Dark Matter
- 3. ... may explain TeV transparency
- 4. ... may explain anomalous star cooling
- 5. ... are well-motivated by string theory

$$\mathcal{L}_{CP} = -\frac{\alpha_s}{8\pi} \bar{\theta} \, \tilde{G}_{\mu\nu} G^{\mu\nu} \longrightarrow \mathcal{L}_{CP} = -\frac{\alpha_s}{8\pi} \frac{a(x)}{f_a} \, \tilde{G}_{\mu\nu} G^{\mu\nu}$$

a(x): Axion field

- f_a : "Peccei-Quinn scale"
- a(x) arises as from spontaneously broken U(1) at (large) scale f_a
- a(x) acquires a mass (potential) a(x) is driven to minimum (CP-conserving)
- a(x) has a generic coupling to gluons

R. Peccei

& H. Quinn (1977)

F. Wilczek (1978)

The Axion mass

$E \sim f_a$ (large)

- spontaneously broken U(1)
- Axion = Nambu-Goldstone
 Boson (massless)

$\rm E \sim \Lambda_{\rm QCD}$

- QCD instanton effects break
 U(1) explicitely
- "tilted mexican hat"
- Axion = Pseudo-Nambu-Goldstone Boson (massive)
- drives Potential to $\Theta = 0$
- CP symmetry restored

 $m_a \simeq 6 \,\mathrm{meV}(10^9 \,\mathrm{GeV}/f_a)$

The QCD-Axion

Axionlike Particles (ALPS)

Axion $m_a \sim 1/f_a$ ALPS m_a and f_a independent

ALPS may arise "generically" from "any" broken U(1) symmetry...

There may be more than one ALP

The Axion/ALP mass predictions

- A difficult job...
- Mass constraints depend on requirements on the considered Axion/ALP (e.g. explain QCD, DM, anomalies)
- Mass constraints depend on model assumptions

(e.g. early universe conditions/assumptions pre/post inflation for DM)

Examples: QCD + DM

[Ringwald, Saikawa 2016]

DM + Inflation

Axion phenomenology

Almost all axion experiments exploit the (effective) axion-photon coupling

- QCD axion via its gluon coupling and mixing with π^0
- riinakon(-iike) enect

$$\mathcal{L}_{a\gamma} \equiv -\frac{g_{a\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu\nu} = g_{a\gamma} \,\mathbf{E} \cdot \mathbf{B} \,a$$

- QCD axion: axion mass ~ axion-photon coupling

$$g_{a\gamma} = \frac{\alpha}{2\pi f_a} C_{\gamma} \qquad C_{\gamma} \sim 0.75 \ (-1.92) \ \text{for DFSZ (KSVZ)}$$

- ALPS: any combination of mass and photon-coupling

QCD axion range

QCD axion range

Excluded by WISP experiments Excluded by astronomy (ass. ALP DM) Excluded by astrophysics / cosmology

QCD axion range

Excluded by WISP experiments Excluded by astronomy (ass. ALP DM) Excluded by astrophysics / cosmology Axions or ALPs being cold dark matter

QCD axion range

Excluded by WISP experiments Excluded by astronomy (ass. ALP DM) Excluded by astrophysics / cosmology Axions or ALPs being cold dark matter WISP hints from astrophysics Three ways to explore the axion-photon coupling

"Light shining through wall" Axion source: laser + B-field

"Helioscopes" Axion source: Sun

"Haloscopes" Axion source: Dark Matter Halo

Axions from the sun

- Solar axions produced (mainly) in the core of the sun
- Energy <E>~ 4.2 keV
- rather robust prediction

Helioscopes – Axions from the sun – axion-electron-coupling

Helioscopes

24

[Sikivie]

Helioscopes: sensitivity

Bkg:

IAXO parameters

Parameter	CAST	IAXO nominal	IAXO+
B [T]	9	2,5	2,5
L [m]	9,3	20	25
A _{bore} [m ²]	0.003	2.3	4.0
$f^*_{Magnet} \simeq B^2 L^2 A$	1	300	1200
b [keV ⁻¹ cm ⁻² s ⁻¹]	10-6	1-5 x 10 ⁻⁸	10 ⁻⁹
ε _{detector}	0,7	0,7	0,8
ε _{optics}	0,3	0,5	0,7
A _{bore} /A _{spot}	200	14500	33000
ε _{solar tracking}	0,12	0,5	0,5

IAXO sensitivity

to test the QCD axion in 2 – 1000 meV region

no other approach known in this mass range

~ 20xCAST on $g_{a\gamma}$

IAXO sensitivity

sensitive to astrophysical hints

The IAXO project

- 2011: First studies concluded (JCAP 1106:013,2011)
- 2013: Conceptual Design finished (arXiv:1401.3233).
 - Most activity carried out up to now ancillary to other group's projects (e.g. CAST)
- August 2013: Letter of Intent submitted to the CERN SPSC
 - Lol: [CERN-SPSC-2013-022]
 - Presentation in the open session in October 2013:
- January 2014: Positive recommendations from CERN SPSC.
- 2014-16: Transition phase: In order to continue with TDR & preparatory activities, formal endorsement & resources needed.
 - Some IAXO preparatory activity already going on as part of CAST near term program: IAXO pathfinder system (Micromegas + telescope) installed in CAST in 2014
 - Preparation of a MoU to carry out TDR work.
- July 2017: Formation of IAXO collaboration

The IAXO project

IAXO magnet (CDR design)

Magnet optimization figure of merit: $f_M = L^2 \int B^2(x,y) dx dy - f_M = L^2 \int B^2(x,y) dx dy \to L^2 B^2 A$

B: superconducting NbTi at 4.5K \rightarrow B_{peak} 6 T , B_{us}

L: as long as reasonably possible (rotatable): L =

A: driven by optics, D=60 cm per bore, n=8

Baseline design inspired by ATLAS toroid, large " reasonable cost

Not ideal in terms of magnet cost, amount of SC cable \rightarrow new alternative

IAXO magnet (CDR design)

Property		Value
Cryostat dimensions	S: Overall length (m)	25
	Outer diameter (m)	5.2
	Cryostat volume (m ³)	~ 530
Toroid size:	Inner radius, R_{in} (m)	1.0
	Outer radius, R_{out} (m)	2.0
	Inner axial length (m)	21.0
	Outer axial length (m)	21.8
Mass:	Conductor (tons)	65
	Cold Mass (tons)	130
	Cryostat (tons)	35
	Total assembly (tons)	~ 250
Coils:	Number of racetrack coils	8
	Winding pack width (mm)	384
	Winding pack height (mm)	144
	Turns/coil	180
	Nominal current, I_{op} (kA)	12.0
	Stored energy, E (MJ)	500
	Inductance (H)	6.9
	Peak magnetic field, B_p (T)	5.4
	Average field in the bores (T)	2.5
Conductor:	Overall size (mm^2)	35×8
	Number of strands	40
	Strand diameter (mm)	1.3
	Critical current @ 5 T, I_c (kA)	58
	Operating temperature, T_{op} (K)	4.5
	Operational margin	40%
'	Temperature margin @ 5.4 T (K)	1.9
Heat Load:	at 4.5 K (W)	~ 150
	at 60-80 K (kW)	~ 1.6

A Review of the Principle Design of the Superconducting Toroidal Magnet System for the International AXion Observatory (IAXO)

Fellowship Summary Report

Idan Shilon

Under supervision of

Herman H. J. ten Kate and

Alexey Dudarev

ATLAS Magnet Team Physics Department CERN

March 26, 2014

IAXO magnet (beyond baseline)

- Single bore winding yields potentially higher FOM at given amount of SC cable
- Modularity
- But: more R&D needed
- MiniIAXO as scale-up demonstrator with physics potential:
 - Test magnet design at relevant scale (only 1 bore full diameter)
 - Test bench for optics + detector
 - Able to do relevant physics (at intermediate level)

TODO: wait for Hermans/Igors talks...

3.4 Toroid Coil Variants IAXO magnet (beyond baseline)

Flat Racetrack Coils - Toroid design (CDR Default)

- Straightforward coil winding and support structure
- Proven technology for his size of magnets
- But: Somewhat inefficient in terms of NbTi usage

CCT Dipoles - Toroid design

- More efficient in terms of field configuration --> Reduced stored energy, amount of NbTi
- But: More complicated conductor layout

Saddle coils Octupole or Toroid design

- Field configuration efficiency similar to CCT
- Very homogeneous field inside bore
- Still more complicated conductor layout compared to conceptual toroidal design

[H. ten Kate]

Parameter	MinilAXO
B [T]	2,5
L [m]	10
A _{bore} [m ²]	0,28 (1 bore)
$f^*_{Magnet} \sim B^2 L^2 A$	10

[H. ten Kate]

IAXO optics

Overall FOM ~ S/VB B scales with sensitive area \rightarrow focus sensitive area to smallest achievable size \rightarrow small focal length S scales with efficiency of optics \rightarrow high efficiency at small angles \rightarrow large focal length

Demagnification ~ 14400 Efficiency ~ 0.7 → improves sensitivity by factor 84 w.r.t. no optics

Challenges:

- precision vs. cost
- optimize coating \rightarrow efficiency
- off axis efficiency (sun is not a point source)

Telescopes	8
N, Layers (or shells) per telescope	123
Segments per telescope	2172
Geometric area of glass per telescope	0.38 m ²
Focal length	5.0 m
Inner radius	50 mm
Outer Radius	300 mm
Minimum graze angle	2.63 mrad
Maximum graze angle	15.0 mrad
Coatings	W/B ₄ C multilayers
Pass band	1-10 keV
IAXO Nominal, 50% EEF (HPD)	0.29 mrad
IAXO Enhanced, 50% EEF (HPD)	0.23 mrad
IAXO Nominal, 80% EEF	0.58 mrad
IAXO Enhanced, 90% EEF	0.58 mrad
FOV	2.9 mrad

IAXO detectors

Name of the game:

- high efficiency for single soft X-ray photons
- at lowest possible background

In addition:

- low threshold (< 1 keV)
- good energy resolution

Multitude of technologies

- gaseous (Micromegas, InGrid)
- semiconductors (SDD, ...)
- cryogenic (MMC, TES, ...)

Severeal technologies already studied in CAST

IAXO detectors

Background goal: o(1) background events/keV during 5 years of operation

sensitive signal area o(1 cm²), solar observation time o(10⁸) seconds

 \rightarrow ultimate background level goal: 10⁻⁸ keV⁻¹cm⁻²s⁻¹

Market leader: Microbulk Micromegas

- design for radiopurity
- passive shielding
- active shielding
- offline discrimination

IAXO detector baseline: small Micromegas detector

[Irastorza et al, Zaragoza Ferrer-Ribas et al, Saclay]

IAXO detectors: InGrid/GridPix

Micromegas on a pixel readout chip (Timepix/Timepix3) Low energy threshold (~200 eV) Topological (charged) background rejection Robust energy measurement (counting) Already being used in CAST

Number of pixels

IAXO detectors: ultimate E resolution - MMCs

Metallic Micro Calorimeter (MMC) Extremely low threshold & eV energy resolution! To be operated at mK temperatures Background to be studied

[L. Gastaldo, HD]

300 nm Silicon-Nitride at 1.5 bar overpressure

[Krieger et al, Bonn & NORCADA Inc.]

43

IAXO site – why not here?

- Presently assembly area building 1
- > DESY wall
- > Nice trees
- Close to cryo lines
 - 120m to FLASH hall
 - 150m to cryo plant

IAXO site – why not here?

Hot news: IAXO collaboration founded today

Institutions ready to sign the bylaws

- 1. Barry University
- 2. Irfu/CEA Saclay
- 3. University of Cape Town
- 4. Institut de Ciències del Cosmos of the Universitat de Barcelona
- 5. Lawrence Livermore National Laboratory
- 6. Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre <Kurchatov Institute>
- 7. Heidelberg University
- 8. Universidad de Zaragoza
- 9. MIT's Laboratory of Nuclear Science
- 10. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow
- 11. Rudjer Bošković Institute, Zagreb
- 12. Physikalisches Institut der Universitaet Bonn
- 13. Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica, CSIC, Spain
- 14. JGU Mainz

Also (to be confirmed): CERN, DESY, DTU Denmark, U South Carolina, University Columbia

19 initial member institutes8 countries3 regions

Summary & Conclusions

- Axions are a trending topic in particle physics, astrophysics, cosmology!
- Need several next-generation experiments to cover complete parameter space
- IAXO unique to cover the 1 ... 1000 meV region for the QCD axion
- IAXO sensitive to clarify astrophysical anomalies
- Technology quite advanced, scale-up approach (BabyIAXO) enables us to start "now"! Full IAXO by 2025?
- DESY appears as a very suitable site!