Science with CTA

The Cherenkov Telescope Array Status and Perspectives

Gernot Maier

The Cherenkov Telescope Array - Summary

> future observatory for high-energetic gamma rays

 astronomy & astroparticle physics with photons in the energy range 20 GeV to 300 TeV

> huge improvements in all performance aspects

 x10 better sensitivity; better field of view, angular and energy resolution; wider energy coverage; few km² collection area; flexible observations

> user facility - guest observer driven

open observatory: data available after some proprietary period

> international project ~400 M€ cost - fully online 2022-2024

involves ~90% of all gamma-ray astronomers + many more

> large DESY project

Science Drivers for CTA

Implementation of CTA

Following the upcoming "Science for CTA" publication - soon on the archive

Cosmic Particle Accelerators

The sky above Namibia Optical + Gamma ray (>100 GeV) H.E.S.S. observations of the Galactic plane

Cosmic Particle Accelerators

The sky above Namibia Optical + Gamma ray (>100 GeV) H.E.S.S. observations of the Galactic plane

Multi-wavelength / multi-messenger image: photons from radio to gamma rays neutrinos charged cosmic rays

Cosmic Particle Acceleration

how and where are particles accelerated?how do they propagate?

what is their impact on the environment?

Gernot Maier DESY Seminar | 28.2/1.3 2017

Cosmic Particle Acceleration

how and where are particles accelerated?how do they propagate?

what is their impact on the environment?

Gernot Maier DESY Seminar | 28.2/1.3 2017

• Probing Extreme Environments

processes close to neutron stars and black holes

processes in relativistic jets, winds, accretion, explosions

cosmic voids

Accreting source - binary systems

Pulsars

Active Galaxies with supermassive black holes and relativistic jets

> Gernot Maier DESY Seminar| 28.2/1.3 20

Probing Extreme Environments

processes close to neutron stars and black holes

processes in relativistic jets, winds, accretion, explosions

cosmic voids

Accreting source - binary systems

Particle acceleration in black hole systems:

Active Galaxies with supermassive black holes and relativistic jets

> Gernot Maier DESY Seminar | 28.2/1.3 20

shocks in relativistic jets / outflow
magnetospheric origin introduced by rotating black hole

Pulsars

• Exploring Frontiers in Physics

what is the nature of dark matter? how is it distributed?is the speed of light constant?

do axion-like particles exist?

dark matter (line-of-sight density)

Gamma-rays from the Universe

Gamma-rays from the Universe

Measuring gamma-rays (20 GeV to 300 TeV)

Gernot Maier DESY Seminar | 28.2/1.3 2017 Nanosecond long flash of blue light; few photons / m²

Measuring gamma-rays (20 GeV to 300 TeV)

MAGIC (La Palma)

H.E.S.S. (Namibia)

VERITAS (Arizona)

Science drivers and requirements to the instrument

Cosmic Particle Acceleration

- how and where are particles accelerated?
- how do they propagate?
- what is their impact on the environment?

> Probing Extreme Environments

processes close to neutron stars and black holes
processes in relativistic jets, winds, explosions
cosmic voids

Beyond the standard model

what is the nature of dark matter? how is it distributed?

is the speed of light constant?

do axion-like particles exist?

Science drivers and requirements to the instrument

Cosmic Particle Acceleration

- how and where are particles accelerated?
- how do they propagate?
- what is their impact on the environment?

> Probing Extreme Environments

processes close to neutron stars and black holes
processes in relativistic jets, winds, explosions
cosmic voids

> Beyond the standard model

what is the nature of dark matter? how is it distributed?

is the speed of light constant?

do axion-like particles exist?

Gernot Maier DESY Seminar | 28.2/1.3 2017

CTA Telescopes

Mid-size telescope 12 m diameter 90 GeV to 10 TeV large field of view precision instrument

Large-size telescope 23 m diameter >20 GeV rapid slewing (<50s)

Small-size telescope 4-5 m diameter >5 TeV large field of view large collection area

Prototypes

Prototype of a CTA mid-size telescope Berlin Adlershof

Seminar | 28.2/1.3 201

Dual-mirror mid-size telescope (Arizona)

Small-size telescope (Meudon)

> Small-size telescope (Sicily)

Prototype Cameras

FlashCam camera for mid-size telescopes

MAPM Camera

0.4 m

small-size telescope

Cherenkov Telescope Array

DESY

DE01 Seminar | 20.2/1.3 2017

CTA Southern Site Paranal, Chile 4 large size telescopes 25 mid-size telescopes 70 small size telescopes

CTA Northern Site La Palma Island 4 large-size telescopes 15 mid-size telescopes

Large arrays of Cherenkov Telescopes

Large arrays of Cherenkov Telescopes

Flexibility: Surveys and Monitoring

CTA SCHEDULING

Monitoring 4 telescopes

TeV survey

using MSTs PeV Deep Field using SSTs GeV observations using LSTs

Large zenith angle observations from other hemisphere Monitoring 1 telescope

CTA Site Paranal

Cerro Armazones E-ELT

> Proposed Site for the Cherenkov Telescope Array

Cerro Paranal Very Large Telescope

CTA Site La Palma

Roque de los Muchachos Observatory, La Palma, Spain

Foundation of first large-size telescope

@Daniel Mazin

residencia

CTA Performance

10⁶ m² effective area close to arcmin angular resolution less than 10% energy resolution

Gernot Maier DESY Seminar | 28.2/1.3 2017

The CTA consortium

Gernot Maier DESY Seminar | 28.2/1.3 2017

CTA Science Data Management Centre - DESY

Headquarters (CTA operation) in Bologna

CTA Timeline

Release of official CTA Integrated Project Schedule in summer 2017

CTA Key Science Projects

CTA Surveys - an unbiased census of particle acceleration

CTA Surveys - an unbiased census of particle acceleration

Deep Survey of the Galactic Plane

Deep Survey of the Galactic Plane

Deep Survey of the Galactic Plane

Gernot Maier DESY Seminar | 28.2/1.3 2017 Sample full population of objects with luminosity of known TeV sources up to 20 kpc distance 30

CTA

The Galactic Centre Region

> closest supermassive black hole (4x10⁶ M_☉)

Iow-luminosity active galactic nuclei

- strong star-forming activity (10% of the activity of the whole Galaxy)
- multiple supernova remnants and pulsar wind nebula
- > dense molecular clouds
- > large-scale outflows (Fermi bubbles)
- Iargest dark matter line-ofsight density

Herschel - infrared (molecular gas, target material)

The Galactic Centre Region

SY

Gern DES ays

lio

erial)

The Large Magellanic Cloud (LMC)

- Milky Way is just one 'laboratory'
- LMC: 10% of Milky Way star formation (2% volume only)

face on

well known distance (50 kpc)

- deep CTA observations will reveal source population and diffuse emission
- > link of star formation to cosmic rays?
 - fundamentals of star forming not very well understood
 - impact of cosmic rays?
 (pressure + ionization)

> SN 1987A

nearest naked eye Supernova since Kepler in 1604

Star forming regions and cosmic-ray acceleration

PeVatrons and Supernova remnants

- cosmic rays carry on average as much energy per unit volume as star light in the Galaxy
 - input of 10⁴¹ erg/s required to maintain cosmic ray intensity (~10 million years of confinement time)
- flux largely dominated by protons up to PeV energies (knee)
- > what are the PeVatrons accelerating those particles?
 - Supernova remnants satisfy cosmic-ray energy requirements (10% conversion efficiency)
- effective area, energy range and angular resolution

PeVatrons and Supernova remnants

- cosmic rays carry on average as much energy per unit volume as star light in the Galaxy
 - input of 10⁴¹ erg/s required to maintain cosmic ray intensity (~10 million years of confinement time)
- flux largely dominated by protons up to PeV energies (knee)
- > what are the PeVatrons accelerating those particles?
 - Supernova remnants satisfy cosmic-ray energy requirements (10% conversion efficiency)
- > effective area, energy range and angular resolution

PeVatrons and Supernova remnants

- cosmic rays carry on average as much energy per unit volume as star light in the Galaxy
 - input of 10⁴¹ erg/s required to maintain cosmic ray intensity (~10 million years of confinement time)
- flux largely dominated by protons up to PeV energies (knee)
- > what are the PeVatrons accelerating those particles?
 - Supernova remnants satisfy cosmic-ray energy requirements (10% conversion efficiency)
- effective area, energy range and angular resolution

Transients

- > dramatic outburst observed and expected in a wide range of objects
 - Gamma-ray bursts (GRBs)
 - binaries and pulsar wind nebulae
 - active galactic nuclei
 - PeV neutrino sources
 - gravitational waves
- often associated with compact objects like neutron stars or black holes

Four orders of magnitude better sensitivity for minute-scale phenomena.

Unexplored astronomical window!

Gamma-ray bursts

- > most luminous explosions in the Universe
 - 10⁵²-10⁵⁴ erg isotropic-equivalent energy release (primarily MeV band)
- > long GRBs: massive star collapse
- short GRBs: neutron star or black hole mergers
- > cosmological distances
 - observed beyond z=8
- basic aspects not well known
 - nature of central engine, jet formation, particle acceleration, prompt/afterglow emission
- > GRB origin of ultra-high energy cosmic rays (E>10¹⁸ eV)

blue light: synchrotron radiation from HE electrons

000 light years

jet: relativistic hot, magnetized plasma

hot spots: shocked jet plasma

supermassive black hole

Gernot Maier DESY Seminar | 28.2/1.3 2017

Active Galactic Nuclei

Active Galactic Nuclei & Lorentz invariance measurements

 $c^{2} p^{2} = E_{\gamma}^{2} [1 \pm \xi_{1} E_{\gamma} / E_{QG} \pm \xi_{2} (E_{\gamma}^{2} / E_{QG}^{2}) \pm ...]$

Gernot Maier DESY Seminar | 28.2/1.3 20

$$\delta t \simeq \left(\frac{\Delta E}{\xi_{\alpha} E_{Pl}}\right)^{\alpha} \frac{L}{c}$$

36

Active Galactic Nuclei & Lorentz invariance measurements

$$c^{2} p^{2} = E_{\gamma}^{2} [1 \pm \xi_{1} E_{\gamma} / E_{QG} \pm \xi_{2} (E_{\gamma}^{2} / E_{QG}^{2}) \pm ...]$$

Gernot Maier DESY Seminar | 28.2/1.3 20

$$\delta t \simeq \left(\frac{\Delta E}{\xi_{\alpha} E_{Pl}}\right)^{\alpha} \frac{L}{c}$$

36

everything discussed until now is background

(but necessary to understand if we want to find physics beyond the standard model)

Gernot Maier DESY Seminar | 28.2/1.3 2017

Axion-like particle searches

Coupling of photons to axion-like particles (ALPs):

$$\mathcal{L}_{\gamma a} = g_{\gamma a} \vec{E} \cdot \vec{B} a$$

ALPs: coupling strength and mass are independent parameters

Gernot Maier DESY Seminar | 28.2/1.3 2017 Oscillations between ALPs and photons in external magnetic field for photons above critical energy:

$$E_{\rm c} = \frac{m^2}{2g_{\gamma a}B\sin\theta}$$

m = 20 neV, $g_{\gamma\alpha}$ = 10⁻¹⁰ GeV⁻¹: E_C ~ 100 GeV

(Θ: angle between photon direction and magnetic field)

40

Axion-like particle searches with CTA

Current results CTA (with ALPS) CTA (without ALPS)

Axion-like particle searches with CTA

Energy (TeV)

The Cherenkov Telescope Array
Cosmic Particle Acceleration
Probing Extreme Environments
Beyond the standard model

Cahill-Rowley et al 2013