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What is Yandex

In Q3 2016 search share 386
across different platforms vm/

were approximately’:

64% on desktop

38% on Android 5.3
. .

426 Or lOS 10.01.12 101112 09.09.13 09.0/7/.14 01.05.15 10.03.16 03.01.17/

Source: Liveinternet.ru 2012-December, 2016; includes desktop and mobile

1Based on company estimates, as provided on Q3 2016 earnings call
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Our group

@)

N/

Yandex School of Data Analysis (YSDA) - non-commercial /
educational organisation; ‘ . ) ,

Research group at Yandex School of Data Analysis .

> 2 physicists (PhD), 8 data scientists (6 of them are
graduate/undergraduate students from MIPT, MSU, HSE) \

Laboratory of Methods for Big Data Analysis, HSE NRU
YSDA is member of HEP collaborations: Yande)(

> CERN: LHCb (since 2015), SHiP (since 2014)
> CRAYFIS (since 2015), OPERA
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Working group directions

Research & Development

> Solving scientific and technical HEP challenges from LHCb, SHiP, CRAYFIS
by means of Machine Learning

Education

> Machine Learning Courses (YSDA, Imperial College London, Helsinki CSC)

>  Summer Schools on Machine Learning (bit.ly/mlhep2016, bit.ly/
Mlhep2015, bit.ly/mlhep2017/)

Outreach

> Masterclasses, Data&Science (https://events.yandex.ru/events/ds/),
> Hackatnones on data science, Machine Learning (http://bit.ly/2IxUWCO)
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Machine Learning is ...

Pandemia

Technomagic

Panacea

Answer to Big Data Challenge
King of the hill (right)

Disciple of statistics and
optimisation methods

Al harbringer

VoWV NV NV NV WV

> Central part of the Data Science
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Namely

Machine Learning is about learning algorithms A that:

> defined on sample set 2" (e.g. R") and targets % (e.g. {0, 1});
> take aproblem (dataset) D=(X,y) C IXY;

> learnrelation between & and ¥%;

> and return prediction function:

A(D)=f
[i XY
> that minimises given metrics (loss function &)
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«No Free Lunch» Theorem

No free lunch theorem states that on average by all datasets all
learning algorithms are equally bad at learning.

For example:

> crazy algorithm A(0):

f(z) = ( sz +6| mod 17 + 1027) mod 2

> and SVM

oerform equally [bad] on average for all possible datasets.

Andrey Ustyuzhanin



So are ML algorithms useless?

No Free Lunch theorem applies to:

> onelearning algorithm;

> against all possible problems.

in real world:

> data scientist with prior knowledge of the world;
> problem description;

> data description;

> asetof standard algorithms.

Andrey Ustyuzhanin



Traditional Machine Learning (simplified)

> analyse a problem and make assumjptions;

> pickan algorithm from a toolkit (e.q. logistic
regression);

feature
engineering

Logistic
> provide assumptions suitable for the algorithm gegfeésion
. . omain
(feature engineering).
prior
problem

domain

Andrey Ustyuzhanin 9



Feature engineering illustration
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How can we separate green from red by linear model?
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Problem 1: Data Certification (CMS)

Traditionally, quality of the data at CERN CMS experiment is

determined manually which requires considerable amount of
human efforts;

ML can save some of those efforts; L _ Rejected -
Rejection Rate = , — min;
Data: CMS 2010B run open data; Total quantity of samples
Aim: automated classification of | False Positive
, , Pollution Rate = — —— < const;
Lumisections as “good” or “bad”; True Positive + False Positive
Features: particle flow jets, Calorimeter Jets, Photons, Muons;  nes Rate False Negative
The dataset was flagged by experts (3 FTE). True Positive + False Negative — |
automatic g‘ic'_s"ff‘_
decision
o ——
Andrey Ustyuzhanin 0 Cut "bad” Cut "good 1 12



Loss Rate constraint

Results

Rejection Rate
0,090 manual work

IO'7519 The aim is to minimise the Manual work with
vez1 |low Loss Rate (“good” classified as “bad”) and
Pollution Rate (“bad” classified as “good”);

0.015}

10.5023

0.010
10.3775

2526 ~80% saving on manual work is feasible for
Pollution & Loss rate of 0.5%.
Next steps: adopt technique for 2016 data &

0-08%00 0.005 0.010 0.015 0.020 00030 run in productiOn
Pollution Rate constraint

0.005}

0.1278

http://bit.ly/210MLIN
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http://bit.ly/2l0MLiN

Machine Learning Challenges

Complications

Lumisection representation
Feature engineering
Continuous quality update

Algorithms:
Supervised learning, binary classification:
> Neural Networks, Gradient Boosting

Active Learning

Andrey Ustyuzhanin
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Problem 2: LHCDb Particle Identification (PID)

) Problem: identify charged particle
associated with a track (multiclass
classification problem)

particle types: Electron, Muon, Pion, Kaon,
Proton and Ghost;

) LHCb detector provides diverse plentiful
information, collected by subdetectors:

CALO, RICH, Muon and Track observables,
his information should be combined,;

) Monte Carlo-simulated samples.

Andrey Ustyuzhanin

innermost layer outermost layer

muon
Ssystem

tracking electromagnetic hadronic
calorimeter

system calorimeter

photons’

electrons

neutrons
0
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o

C. Lippmann - 2003
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Stacking and Special
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Neural Networks
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Models AUCs

Ghost Electron | Muon Pion Kaon Proton
baseline 0.9484 |0.9854 [0.9844 |(0.9345 |0.9147 [0.9178
keras DL 0.9632 |0.9914 |0.9925 |0.9587 [0.9319 |0.9320
XGBoost 0.9609 |0.9908 |0.9922 |0.9568 |[0.9303 |0.9302
special BDT 0.9636 |0.9913 |0.9926 |0.9576 [0.9309 |0.9310

> ROC AUC - a generic ML quality metric, deviation is ~104, due to large training/testing

sample

> BDT has similar quality to keras DL

> Training procedure and prediction time for BDT grows up linearly depending on

number of classes

17



Improving PID with flat models

Flatness SignalMVAEff V TrackP Long Kaon
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Real world

Information from subdetectors strongly depends on particle momentum

(energy), thatleadsto s
momentum. Undesirab

Andrey Ustyuzhanin
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Flat Model vs Baseline

100 | | Mu}on | |

Uniform boosting suppresses ey L 0 e WA 4 4. 20 Eff baseline¥ s 0 Ef Basline
this dependency: a0 [+ e e

based on gradient boosting > |- — L

approach S | Bt -

modified loss-function to have € | =T t

«unflatness» that penalises for - o )

<<bump5>> 20!{% X % i = -

https://arxiv.org/pdf S S

/‘4/‘0.4/‘40\//‘ .Qdf 0.8000 — ?)i.r(:]gj(l)ition, Wor(l;(i)%g;ogress 0.0603 . 0.0604 ] 0.0605 0.0006

Muon 1/(Momentum MeV/c)

Andrey Ustyuzhanin 19


https://arxiv.org/pdf/1410.4140v1.pdf
https://arxiv.org/pdf/1410.4140v1.pdf

Uniform boosting provides flatness along 4 variables at once

Efficiency

Efficiency
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Machine Learning Challenges & Methods

Data representation (particle traces)
Model blending/ensembling from different sub-detectors
Metric Selection

> Multiclassification? One-vs-One? One-vs-all? Accuracy? Log-
0ss? ROC-AUC?

Reduce model output dependence on momentum (flatness)
Methods:

Multi-class classification
Deep NN
Advanced Boosting (altering loss function)

http://bit.ly/210yvXc 5

Andrey Ustyuzhanin


http://bit.ly/2l0yvXc

Problem 3: LHCb Topological Trigger

™ racks from-prim ex

X 0.2 mm]

Andrey Ustyuzhanin

. 4 . 4 . 4 .

[mm]
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LHCb Topological Trigger

Generic trigger for decays of beauty and
charm hadrons;

Part of Software trigger;

Inclusive for any B decay with at least 2
charged daughters including missing
particles;

Look for 2, 3, 4 track combinations in a wide
mass range. (j

Proton

Andrey Ustyuzhanin

PV
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Machine Learning Challenges & Methods

Definition of event (variable number of particles)
Training subsample selection

Training scheme (different decays)

Metric selection

Real-time demand, quality-speed trade-off

Methods

Binary classification
Model blending
Feature selection
Model speed-up

Andrey Ustyuzhanin
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Online part using Bonsai BDT

Features hashing using bins before training

. - Y
Converting decision trees to Y2

Nn-dimensional table (lookup table)

n

n,
-

Y et
Bttt =

ST AT AR S A SO A A AT L L A

S gl P g g gtV = g
ST LI Y D A LI AP T T A BT
N gVl B B S P e

Table size is limited in RAM (1Gb), thus count of bins for each

features should be small (5 bins for each of 12 fea

Discretisation reduces the quality

Andrey Ustyuzhanin
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Trigger optimisation results

N-Body trigger Performance Comparison
(bars correspond to trigger efficiency for different decay modes)

1 B — K*[Ktn jutp™
2 BT - T K KT N
3. B DOKYK-nluty, -
4, BY - (1) |[pTp |KT K nte™  ©
5. BY— D[KTK nlrt  *
6.B" - DK ntnt|D [KTn 7] *

10

0

nttp://arxiv.org/abs/1510.005/2 1 2 3 4 5
Run-| (Before optimization) MatrixNet

https://github.com/yandexdataschool/LHCb-topo-trigger

Andrey Ustyuzhanin


http://arxiv.org/abs/1510.00572
https://github.com/yandexdataschool/LHCb-topo-trigger

Problem4: T —u pu pu

Search for very-very rare decay

(1049 according to standard model);
Current sensitivity of LHCb is about 10-°;
Data sample is selected from what has been collected by triggers;

Sits on the top of data analysis chain (after tracking, triggers, preselections,
etc), so data and results should be treated under certain assumptions.

Andrey Ustyuzhanin
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ML-flavoured sub-problem

Results:

)
)
)

>

Andrey Ustyuzhanin

-very decay candidate described by set of high-level features;

Classification: differentiate decays containing signal from others
(background);

Simulated sample of signal, real ssmple for background but,
model should not pick simulation-specific information;

Trained model output should not correlate with
mass of mother particle.

http://arxiv.org/abs/1409.8548
https://www.kaggle.com/c/flavours-of-physics

Data Doping: http://bit.ly/21JSEzU

https://github.com/vandexdataschool/hep ml



http://arxiv.org/abs/1409.8548
https://www.kaggle.com/c/flavours-of-physics
http://bit.ly/2lJSEzU
https://github.com/yandexdataschool/hep_ml/

ML Challenges

Constrained classification:

> flatness;

> signal/background vs MC/real-data check.
Metric?

> Prefer classifier with higher numlber of true positive with lowest
possible false positive number;

> Chosen metric: constrains + weighted ROC AUC.

Andrey Ustyuzhanin
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Problem, HEP Experiment ML methods

Particle [dentification LHCb DNN, classification, advanced Boosting

MC generation optimization SHIP GP, model calibration, non-convex optimisation
Tracking E'El)cl\:/leTSHiP’ Tracking, Clustering, real-time

Jet identification LHCDb CNN, multi classification

Triggers CRAYFIS Enhanced Convolutional Neural Nets (CNN)
Data modelling CRAYFIS Generative Adversarial Nets (GAN)
Anomaly Detection, data LHCDb Time Series, Binary classificati

certification ! y classitication

Triggers LHCb Classification, real-time

Detector optimisation SHIP Surrogate modelling

Andrey Ustyuzhanin
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HEP Feature Engineering down to discovery

. Y
8800
- £ 600 -
o S
" £ B
‘Q

E 202"”150"'130"‘
Nits clustering tracking selection ana\ysism .
~107 ~104 ~50 ~10 -1
10 ms 100 ms T week-1 month 10 month

Could it be automated a bit more?

Andrey Ustyuzhanin



Going deeper



How to train machine to recognise a kitten?

Andrey Ustyuzhanin
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Hand-made feature engineering

Problem space

Traditional approach:

» edge detection;

solved well by

> IMage segmentation; logistic regression

» fit Nose, ears, eyes;

> average, ’

standard deviation
of segment color;

prior

@ .
original dataset problem domain

» fluffiness model; o
» Kitten's face model:
» logistic regression.

Andrey Ustyuzhanin 34



Deep learning learns it from the data

Prior problem
domain

Andrey Ustyuzhanin

35



Approach comparison

Hand-made:

» edge detection;
> IMmage segmentation;
» fit Nose, ears, eyes;

> average, o
standard deviation
of segment color;

» fluffiness model;
» Kitten's face model;
» logistic regression.

Andrey Ustyuzhanin

Deep Learning-way:

» Non-linear transformation;

> another non-linear transformation;

» NoN-linear transformation, again;

» NoN-linear transformation, and again;

>

>

non-linear transformation (why not?);

Ogistic regression

Allows for exchanging excess of data to
more generic way of feature/
transformations description and in turn
helps dealing with much harder stuff.

36



How Deep Learning can be applied?

-
.
-

-~
-
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.Y

- . .
-t - - -

https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg

Andrey Ustyuzhanin https://qgithub.com/jcjohnson/neural-style



https://github.com/jcjohnson/neural-style

Deep Learning application examples for HEP

Jet flavour identification:

> https://arxiv.org/abs/140/.56/5 - CNN for jets

> https://arxiv.org/abs/1603.09349 - DNN for jets
> https://arxiv.org/abs/1/01.0592/ - GAN for jets
> https://arxiv.org/abs/1/02.00/48 - RNN for jets

Ultimate application:

> Design detector/experiment D for X (Dark Matter, Sterile
Neutrino, etc), so P(X|D) - max.

Andrey Ustyuzhanin
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https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1603.09349
https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1702.00748

INn More details...

Challenges on Kaggle:

«HEP triggers», https://inclass.kaggle.com/c/data-science-hep-triggers
«Higgs Boson», https://www.kaggle.com/c/Higgs-boson

«Flavours of Physics», https://www.kaggle.com/c/flavours-of-physics;
YSDA Course «Machine Learning for High Energy Physics»;

Coursera «Advanced Machine Learning» Specialisation

to be launched in 201/;
Summer Schools:

MLHEP 2015, 2016, http://bit.ly/mihep2015, http://bit.ly/mlhep 016,
MLHEP 2017 - http://bit.ly/mlhep2017 , Reading UK, 17-23 Jul.

Andrey Ustyuzhanin
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https://inclass.kaggle.com/c/data-science-hep-triggers
https://www.kaggle.com/c/Higgs-boson
https://www.kaggle.com/c/flavours-of-physics
http://bit.ly/mlhep2015
http://bit.ly/mlhep2016
http://bit.ly/mlhep2017

Conclusion

Machine Learning is a great tool for exceeding expectations:
> rooted in Math (statistics, numerical optimisation, computer science);
> lots of tools and approaches with various advantages and limitations;

> togreatextentisan art (metric selection, expressing problem assumptions
in features/transformations, data handling, uncertainties evaluation);

> Can be mastered through practice.

LHC was designed as international physics laboratory. We see it is as rich

source of interesting challenges that can be addressed by Machine Learning.

Andrey Ustyuzhanin
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Thank you for attention!

anaderi(@yandex-team.ru


mailto:anaderi@yandex-team.ru

Special Thanks to

Tatiana Likhomanenko
Fedor Ratnikov

Denis Derkach

Maxim Borisyak
Mikhail Hushchyn

and all YSDA research team for helping crafting these slides

Andrey Ustyuzhanin
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Non-uniformity measure

momentum

suolldipald

suoldipald

-uniform predictions

Non

momentum
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) difference in the efficiency can be detected by analyzing distributions

uniformity = no statistical dependence between the momentum and predictions
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Non-uniformity measure

Average contributions (difference between global and local distributions) from different regions
in the momentum: use for this Cramer-von Mises measure (integral characteristic)

M= 3 [ [Fregon(s) = Futonar(5)* dFyioan (5

region

predictions

momentum

46



Flat model construction

) Classifier optimizes a loss function during training

) ldea is to use additional loss term in the optimization problem (FL is flatness loss):

loss = Adal.oss + oF' L

The AdaLoss term corresponds to the classification quality, the FL term - to the flatness, (¢ is a parameter
to control the trade-off

) Optimization methods use gradient of the loss
) Cramer-von Mises metric is not differentiable

) Flatness loss is similar to the Cramer-von Mises metric, but it is differentiable
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Deep Learning: hacking model

hacking layers:

restrictions on weights: convolutions, ...;
new operations: pooling, kernels, ...;
specific unit behaviour: GRU, LSTM units;

combining layers, architecture of network (U-net, ladder net, end-to-
end memory network):
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Deep Learning: hacking model

restrictions on search space:

regularisation, e.q.:

2N e -
) L=Z (‘r().\'.\'—c'mr()p‘\‘+(x H WH 2
regularisation with respect to solution Wy of a similar problem:
P — C -
j e ('r().\'.\'—('nrr()/).\'+(l “ W_ W()“ 2

Andrey Ustyuzhanin
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Deep Learning: Hacking Search Procedure

SGD-like methods:

> adam, adadelta, adamakx,
> rMSProp;

> nesterovmomentum;

quasi-Newton methods

Andrey Ustyuzhanin
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SGD
Momentum
NAG
Adagrad
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Deep Learning: Hacking search procedure

data augmentation:
shifts, rotations, ...:

> searching for a network that labels shifted, rotated, ... samples
the same way as original ones;

random noise:

> pushing separation surface farther from samples;
interference with network:

drop-out, drop-connect:

> searching for a robust network.

Andrey Ustyuzhanin
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Deep Learning: Hacking search procedure

hacking objectives:

introducing loss for each layer:

n-1
S=%+ ) C
1=/

where:
» ZLi - loss oni-th layer.
Deeply Supervised Networks:

> searches for network that obtains good intermediate results.

Andrey Ustyuzhanin

52



Deep Learning: Hacking initial guess

solution for a similar problem as initial guess for search;
pretraining on a similar dataset:
> unsupervised pretraining on unlabeled samples;

> supervised pretraining.

Andrey Ustyuzhanin
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Problem X: Tracking

Detector Detector

P1

P2

S
® 9
? o
P

1. Make particles tracks from hits and reconstruct its parameters.

2. Combine the tracks before and after the magnet. Reconstruct full tracks.
Calculate particles properties (angles, momenta, vertices, etc).

Andrey Ustyuzhanin
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\Variety of Metrics

> Track finding efficiency
> Eventreconstruction efficiency
> (Ghost Rate

> (Clone Rate

Andrey Ustyuzhanin
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Example of 3D event and Artificial Retinaresponse R(f) = ) exp ( £ (ajzxz )
i=1

Andrey Ustyuzhanin
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Artificial Retina

Pros:

gradient surface

suitable for parallelisation

works under high track occupancy
conditions

suitable for gradient-based
optimisation algorithms for
finding maxima (see —)
comparable performance
(efficiency, ghost rates) to LHCb-
upgrade tracking(VELOUT)

https://doi.org/10.1088/1748-0221/10/03/C03008

Andrey Ustyuzhanin
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Results

simplified track model - straight line parametrised by 2 angles
detector geometry taken from LHCb upgrade TDR (CERN-LHCC-2013-021).

a=1/3 a=1/10
x- SpeedL P factor __Artificial Retina efficiency __Artificial Retina efficiency
wrt to grid search; _ 100 \ _ 100,
Ghost rate is strictly & = * "
. 0.95} - 0.05 .
zero in all cases. 2 S
Multiple results for - 2
S 0.90 S 0.90}
the same track are : :
o o « * « mMean efficiency ® . + » mean efficiency
mergec within 2 oss | 1 10% and 90% percentiles 4 a 05! | 1 10% and 90% percentiles
e-radius (103 rad). 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400
number of reconstructable tracks number of reconstructable tracks

Andrey Ustyuzhanin http://bit.ly/2kk/Ua 58
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«Machine Learning» Challenges & Methods

Metric selection:
> trade-off between efficiency, ghost rate, clone rate
> Hardware-imposed assumptions (straw tube, fiber scintillator, etc)

ldeally (hyper) parameters of tracking algorithm should maximise
probability of finding effect/events we are interested in;
Implementation challenges:

> Speed-accuracy trade-off
> Parallelization

Clustering (Unsupervised), RANSAC, Hough Transform, Deformable
Templates, Hopfield NN, Track Following, Kalman Filter, ...

Andrey Ustyuzhanin
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* Recipe to build a physically sound classifier:

BREAKING THE RULES: DATA DOPING

1. Noft to use reconstructed mass, nor features allowing easy mass reconstruction

2. Try to not use variable regions for which the Monte Carlo simulation doesn't
agree with real data

In order to fullfill 2 we have to break the rules and take a look to the control channel
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Goal: train a classifier able 1o separate
A from B, but not C from D

Max(WAUC(A,B)) with KS(C,D)<epsilon
Hypothesis: Control Channel &

Analysis channel share the same MC
“defects”




BREAKING THE RULES: DATA DOPING

 The ideais to "dope” (in the semiconductor meaning) the training set with a small number of
Monte Carlo events from the control channel , but labeled as background.

This disallow the classifier to pick features discriminating data and Monte Carlo.

Control Channel

New A - 8
Physics CCIERUERIE  Analysis Channel

MC Real Data

There are two parameters that regularize the learning:
. The number of "doping” events
. the complexity of the classifier (for instance number of trees)




BREAKING THE RULES: DATA DOPING

Gnd search over Classifier complexity (n_ trees) and Number (weight) of doping events
Dammit! A new hyperparameter....

Number of events 0 Number of events 2000 Number of events 3000

Free classifier Doping events: 2000 Doping events: 3000



