Physics with Liquid Argon Detectors – from MicroBooNE to DUNE

Stefan Söldner-Rembold University of Manchester Colloquium, DESY Hamburg/Zeuthen 7/8 February 2017

June 15, 1956

DADLOODAT	IN DADLOODANNES					
RADIO-SCHWEIZ AG. KAUIUGKA	MM - KAUIUG KAMME RADIO.	- SUISSE S. A.				
SBZ1311 ZHW UW1844 FM 1	BZJ116 WH CHICAGOILL 56 14	1310				
· · ·	PLC 0025,3	*				
Erhalten - Reçu ,, VIA RADIO	DSUISSE "Befördert - T	iransmis				
NEWYORK SHUNDER HANS	Rrinttelearamm	E - NOM				
	LT 74 15.001.56	31 10				
NACHLASS	PROFESSOR W PAULI Per	Post				
PROF. W. PAULI	ZURICH UNIVERSITY ZURICH					
	NACHLASS PROF. W. PAULI					
WE ARE HAPPY TO INFORM YOU THAT WE HAVE DEFINITELY DETECTED						
NEUTRINOS FROM FISSION FRAGMENTS BY OBSERVING INVERSE BETA DECAY						
OF PROTONS OBSERVED CROSS SECTION AGREES WELL WITH EXPECTED SIX						
TIMES TEN TO MINUS FORTY FOUR	SQUARE CENTIMETERS					
Nr. 20 6500 × 100 3/54 FREDERICK RE Nr. 20 6500 × 100 3/54 BOX 1663 LOS	INES AND CLYDE COWN ALAMOS NEW MEXICO					

Neutrinos as messengers of physics at large scales

Anomalously small neutrino masses might be linked to physics at high scales through see-saw mechanism:

$$\mathcal{L} \sim -\frac{1}{2} \left(\begin{array}{cc} \overline{\nu_L} & \overline{\nu_R^c} \end{array} \right) \left(\begin{array}{cc} 0 & m_D \\ m_D & M \end{array} \right) \left(\begin{array}{c} \nu_L^c \\ \nu_R \end{array} \right)$$
$$m_{\nu} \approx \frac{m_D^2}{M} \quad M \sim 10^{12} - 10^{16} \, \text{GeV}$$

 Add right-handed neutrinos (v_R) and Majorana mass term M to SM Lagrangian.

Astrophysical neutrinos, e.g. from a galactic supernova, probe physics at astrophysical scales:

- 99% of the binding energy of a core-collapse supernova emitted through neutrinos.
- Probes both supernova properties and neutrino physics.

Neutrinos as messengers of physics at large scales

CP Violation in the lepton sector might provide support for Leptogenesis as mechanism to generate the Universe's matter-antimatter asymmetry.

"Three flavour paradigm"

complex phase

$$U_{\text{PMNS}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$s_{ij} = \sin \theta_{ij} \ ; \ c_{ij} = \cos \theta_{ij}$$
CP Violation: $\delta \neq \{0, \pi\}$

Caveat:

No direct evidence for Leptogenesis, since a model is needed to connect the low-scale CPV observed here to high-scale CPV for heavy neutrinos that lead to Leptogenesis.

Neutrino oscillations

Mass ordering (MO)

Matter effects (MSW effect)

- Matter is made of electrons, not muons or taus.
- Coherent forward scattering on electrons modifies the oscillation probabilities:

- Matter effects will lead to additional differences between neutrinos and anti-neutrinos even if CP is conserved.
- Their size will depend on the electron density N_e and G_F .
- Depend on neutrino mass ordering (i.e., sign of Δm_{23}^2).

Optimizing L/E

$L \approx 200 \text{ km}$

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\nu} < 1 \, \text{GeV}$$

- no matter effects; first oscillation maximum.
- use narrow width beam (off axis).

Water Cherenkov

L > 1000 km

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\nu} > 2 \,\mathrm{GeV}$$

- ximum Liquid argon
- matter effects; first and second oscillation maximum.
- use broad-band beam (on axis).
- unfold CP and MO effects through energy dependence.

v_e appearance

- Approximately 40 kt fiducial mass liquid argon Far Detector.
- Located 1300 km baseline_at SURF's 1478 m level (2,300 mwe).
- Compare $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations.

Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF, arXiv:1601.02984.

DUNE Far Detector neutrino flux

Beam (LBNF):

- 1.2 MW from Day 1
- upgradeable to 2.4 MW
- assume running of 3.5 years each in neutrino and anti-neutrino mode.

DUNE oscillation strategy

- Wide-band beams allows us to measure v_e appearance and v_μ disappearance over range of energies
- Mass ordering and CP violation effects can be separated

Stefan Söldner-Rembold

MANCHESTER

CUNE

Mass ordering and CPV

Sensitivity over time

CP Violation Sensitivity

Staged approach: interesting measurements will be made throughout the DUNE physics programme!

Beyond discovery: precision measurements

Comparable precision to quark sector

DUNE Collaboration

>900 collaborators from 30 countries

CERN Collaboration Meeting, January 2017

LBNF/DUNE – Fermilab in 2025

DUNE Near Detector

Baseline design is a NOMAD-inspired Fine Grained Tracker (FGT)

- Central straw-tube tracking system
- Lead-scintillator sampling
 ECAL
- RPC-based muon tracking systems

DUNE Near Detector

- Other options (e.g., HP-TPC, LAr-TPC, hybrid) being studied.
- In 2017, Collaboration will come together to decide on concept (not independent of funding).
- Once agreed, the Near Detector Expression of Interest process begins.
- CDR (2018), TDR (2020)

The Near Detector will provide:

Constraints on cross sections and the neutrino flux A rich self-contained non-oscillation neutrino physics programme.

Will result in unprecedented samples of v interactions >100 million interactions over a wide range of energies: strong constraints on systematics

Time Projection Chamber

A liquid-argon "bubble chamber"

Sanford Underground Research Facility (SURF)

Underground Laboratory SURF

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850 level (~ 1 mile underground)

Far Detector lay-out

Free-standing steel cryostat

External Dimensions: 19.1m x 18.0m x 66.0m

First Detector: single-phase

APA Construction Sites

- We require 150 APAs and 200 CPAs per module.
- Large production site being set up at Daresbury Laboratory between Manchester and Liverpool.
- Will need 3-4 construction sites for DUNE.

Photon detection

Photon detection

Photon detection

- Liquid argon is prolific scintillator.
- Prompt (singlet) and delayed (triplet) components with different lifetimes. Emitted in VUV spectrum.
- Needs wavelength shifting to visible spectrum (TBP).
- Light detection system (PMT, scintillator bars) still under development. 28 nm
- Provides timing; event reconstruction. -

t_{prompt} = 5 ns

nn

Alternative Design: Dual-phase Could form basis of second or subsequent 10-kt FD modules Multilayer PCB anode induction 5 kV/cm amplification 30 kV/cm LEM Vapor extraction 2 kV/cm Larger drift distances than single-phase liquid drift 0.5 kV/cm **Extraction grid**

Alternative Design: Dual-phase

Other challenges: event reconstruction

- Need to reconstruct tracks and showers, measure their energy and perform particle identification.
- Complex event topologies require sophisticated algorithms
- Automatisation a major challenge.

Other challenges: data acquisition

Detector always live

- Pre-trigger TPC data rate of about 1 TB/s.
- Low underground event rate (one beam spill per second, one cosmic ray per minute) allows online data processing.
- Supernova trigger: 10 TB over 10 s.

Core-collapse supernova

- Gravitational binding energy released:
 - 99% neutrinos (N $\approx 10^{58}$)
 - 1% kinetic energy of exploding matter
 - 0.01% light
- Neutrino emission lasts ≈10 sec
- 1-3 SNs/century in our Galaxy (≈10 kpc)

SN1987A: detected \approx 20 neutrino events in total (essentially anti-v_e)

Supernova neutrino signal in LAr

Main detection process:

$$\nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$$

- Reconstruct photons from nuclear de-excitations.
- Need to understand underlying nuclear physics.
- Possible low-energy background from ³⁹Ar.

SN neutrino spectra in DUNE

- SN at 10 kpc in DUNE
 - in 40 kt LAr dector

- Required energy resolution < 10%
- Energy threshold ~ 5 MeV

Garching model, ICARUS energy resolution, 5 MeV threshold

Nucleon decay channels

- Many possible decay modes
- The strength of LAr: kaon modes,
 e.g. p →v K⁺ (SUSY motivated)
- Kaons clearly identified by dE/dx and decay chain.

Efficiency and background rate per Mton per year

JHEP 0704 (2007) 041

Decay Mode	Water Cherenkov		Liquid Argon TPC		
	Efficiency	Background	Efficiency	Background	
$p ightarrow K^+ \overline{ u}$	19%	4	97%	1	-
$p ightarrow K^0 \mu^+$	10%	8	47%	< 2	
$p ightarrow K^+ \mu^- \pi^+$			97%	1	free
$n \rightarrow K^+ e^-$	10%	3	96%	< 2	channels
$n ightarrow e^+ \pi^-$	19%	2	44%	0.8	

Proton Decay Searches

Far Detector Development Path

ProtoDUNE: Dual-phase demonstrator

Validate construction techniques and operational performance of full-scale module

Calibrate detector with chargedparticle beam

6 m x 6 m anode plane made of four 3 m x 3 m independent readout units

6 m vertical drift =>

300 kV cathode voltage

Being constructed at CERN

ProtoDUNE: Single-phase demonstrator

- Active volume: 6 x 7 x 7 m³
- 6 Anode Plane Assemblies
 - 6 m high x 2.3 m wide
- 6 Cathode Plane Assemblies
 - 3 m high x 2.3 m wide
- A:C:A arrangement
- Cathode at -180 kV for 3.5 m drift

ProtoDUNEs at CERN's North Area

Far Detector Development Path

LAr TPC Detectors at Fermilab (short-baseline)

Short-baseline physics goals

- Explore MiniBooNE anomaly.
- Search for low-mass sterile neutrinos.
- Measure neutrino cross sections on argon in 1 GeV energy range – important for entire LAr programme.

low energy excess

Short-baseline physics goals

- Explore MiniBooNE anomaly.
- Search for low-mass sterile neutrinos.
- Measure neutrino cross sections on argon in 1 GeV energy range – important for entire LAr programme.

Impact of Sterile Neutrinos on DUNE

- Presence of sterile neutrinos creates degeneracies when interpreting data in terms of CP violation.
- Testing the sterile neutrino sector is an important input for future long-baseline experiments.

Bands show variation of CP phases for 3+0 and 3+1 scenarios with 1 eV sterile neutrino.

MicroBooNE: Cosmic Rays

Detector located on surface; more often a cosmic ray triggers readout than a neutrino.

Challenges:

- reject events with only cosmic-rays.
- discriminate between neutrino interactions and cosmic rays.
- space charge effects.

First Neutrino Events in MicroBooNE

Michel electrons

Stefan Söldner-Rembold

54

muon-neutrino disappearance

Volume 764, 10 January 2017, Pages 322-327

A combined view of sterile-neutrino constraints from CMB and neutrino oscillation measurements

Sarah Bridle, Jack Elvin-Poole 📥 🔤, Justin Evans, Susana Fernandez, Pawel Guzowski, Stefan Söldner-Rembold

electron-neutrino appearance

DUNE Timeline

Summary

DUNE will

- Probe leptonic CP violation with unprecedented position
- Definitively determine the Mass Ordering to greater than 5 s.d.
- Test the three-flavour paradigm
- Significantly advance the discovery potential for proton decay
- (With some luck) provide a wealth of information on supernova bursts neutrino physics and astrophysics

MicroBooNE/SBND/ICARUS will

- Discover or constrain the existence of low-mass sterile neutrinos
- Measure neutrino cross sections on liquid argon
- Provide a wealth of data/experience with liquid-argon detector

