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The Standard Model Lagrangian

gauge sector

 ν mass sector

EWSB sector

flavour sector

… and beyond?… and beyond? supersymmetry (many variants)
extra spacetime dimensions
compositeness
strong electroweak symmetry
breaking
…
something new?!

supersymmetry (many variants)
extra spacetime dimensions
compositeness
strong electroweak symmetry
breaking
…
something new?!









3

The Standard Model and it’s Problems
 What is the origin of electroweak

symmetry breaking?
– Is there a Higgs boson?
– And WHERE is it?

 What is the Dark Matter?
– Is it produced it at colliders?

 Why is gravity so much weaker
than the other forces?

 Where did all the anti-matter go?
 Do all forces unify at high

energy?
 …

- Tevatron is just touching the TeV scale:
-Can partially address these questions
-Can test theoretical and experimental tools

- LHC was build to fully explore the TeV scale
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Problems: Dark Matter and Anti-Matter
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Outline
 Testing Particle Production

– Jets, W’s and Z’s, b-jets, top quarks
• Builds the basis for searches for Higgs

boson and new physics

 Electroweak Symmetry
Breaking
– W boson and top quark mass
– Higgs boson search

 Beyond the Standard Model
– Supersymmetry and beyond

 Conclusions and Outlook
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Luminosity and Cross Sections

~100?

At peak luminosity ~1 W boson per second produced!

Excellent data taking:
- efficiency ~85%:
- per week ~50 pb-1

- peak lumi: 3.5 x 1032 cm-2 s-1 

with 1 fb-1

1.4 x 1014

1 x 1011

6 x 106

6 x 105

14,000
5,000

Delivered: ∫Ldt=5.6 fb-1

Acquired: ∫Ldt= 4.6 fb-1
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A historic discourse …

 Amazing how much Tevatron improved in the last 6 years Z’s!
– But the early days (6 pb-1) were also a lot of fun and we learned a lot!

April 2002 (my DESY seminar):
~100 Z bosons (Z→µµ)

2008 (4.5 fb-1):
~170,000 Z bosons
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Production of Particles
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X
p

xBj

Q2

The Proton

 It’s complicated:
– Valence quarks
– Gluons
– Sea quarks

 Exact mixture depends
on:
– Q2: ~(M2+pT

2)
– xBj: fractional momentum

carried by parton
 Hard scatter process:

p

Probed in DIS (HERA!)
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Jet Cross Sections

 Cross section measured over 7 orders of magnitude
 Data well described by Standard Model prediction up to

masses of 1.2 TeV
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Jet Cross Section: More Differential

 Double differential measurements in
y and pT map out Q2-x space
– High |y|: asymmetric collision
– Low |y|: symmetric collision

 Data precision better than pdf
uncertainties
– Data constrain the gluon density at high x
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Z production

 High precision measurement challenges hard and soft
QCD predictions
– At low pT(Z): soft non-perturbative effects dominate

• Important for W boson mass measurement
– At high pT(Z): perturbative regime

• Important for understanding background to new physics searches



13

W boson charge asymmetry

 High precision measurement
– Constrains parton distribution functions: d/u
– Important for measurement of W boson mass

W± boost depends on pdf’s: d / u
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Z + Jets Production
Z + n jets

 W/Z+jets are important backgrounds:
– Top production
– SUSY
– Higgs boson

 Data agree with NLO within ~15%
– MC models more or less successful



15

b-quark Production

 Measurements of b-jet
production in variety of
processes
– Data agree with theoretical

predictions within large
uncertainties

– Typical theoretical uncertainties
are ~50%

Z+b

B+b jet
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Diboson Production: WZ,ZZ

ZZ→llll

WZ→lllν

 Diboson production
– Sensitive to trilinear couplings

among gauge bosons
– Direct consequence of SU(2)xU(1)

gauge group
 Recent highlights:

– WZ:
• 5.9σ observation
• Cross section: 5.0+1.8

-1.6 pb
– ZZ:

• 5.7σ observations
• Cross section: 1.60±0.65 pb

 All diboson measurements in
agreement with SM prediction
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Evidence at 4.4σ for WW+WZ →lvjj

 Very similar analysis to Higgs search (see later)
– Also needs to find a peak on a huge (sculpted) background

• Great that this has now succeeded
– Cross section: 20.2 +/- 4.5 pb (in agreement with theory)

 Being done also for WZ/ZZ with Z→bb
– Evidence needs to be achieved before the Higgs since rate is 3 time

higher
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Top Quark Production

 Measured cross section
consistent with theory
– Precision ~8%

2 b-jets
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Top Quark: Kinematics+Properties

 Kinematic properties, couplings and
charge consistent with Standard Model
top production so far
– Precision typically 10%

dσ/dM(tt)
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Single Top Production

 Very difficult analysis
– Signal / background small and backgrounds uncertain
– Important “practice” for Higgs boson: σ(single top) / σ(WH)~10

σ ∝ Vtb
2

 Evidence for single top
established by CDF and DØ:
– CDF:    2.2 ± 0.7 pb
– DØ:      4.7 ± 1.3 pb
– Theory: 2.86 ± 0.36 pb
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Electroweak Symmetry
Breaking
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The Electroweak Precision Data

 Precision measurements of
– muon decay constant and α
– Z boson properties (LEP,SLD)
– W boson mass (LEP+Tevatron)
– Top quark mass (Tevatron)
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W Boson Mass

xxx

 New world average:
 MW=80398 ± 25 MeV

 Ultimate Run 2 precision:
 ~15 MeV
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   Top Quark Mass

 Rather large pure samples
available:
– 166 events: S/B=4/1

 Perform simultaneous fit for
– Top quark mass
– Jet energy scale (MW=Mjj)

• dominant systematic uncertainty
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   Top Quark Mass Results

mtop=172.4± 1.2 GeV/c2 

Prediction from LEP1, SLD, MW,ΓW: 178.9 +11.7
-8.6 GeV/c2
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MW, mtop and mHiggs

 Indirectly: mH<154 GeV@95%CL
 Directly (LEP): mH>114 GeV@95%CL
(caveat: is the measured top mass the pole mass?)
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σ
(p

b )

Higgs Production at the Tevatron

 Dominant gg->H
 Subdominant WH, ZH
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W+Higgs with H→bb

 For mH<135 GeV/c2:
– WH→lνbb, ZH →llbb, ZH →ννbb

 Both collaborations have analyzed nearly 3 fb-1 in for all
three modes:
– Analyses based on advanced analysis techniques

• Neural Networks, Boosted Decision trees, etc.

ZH→ννbb
WH→lνbb
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 Main background:
– WW production

 Higgs mass reconstruction impossible due to
two neutrinos in final state

 Make use of spin correlations to suppress WW
background:

– Higgs has spin=0
– leptons in H → WW(*) → l+l-νν are collinear

 Use advanced techniques (NN etc.) to gain
further separation power

H → WW(*) → l+l-νν
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 Neural Network separates signal from
background rather well

– Data well described in background
dominated region

–  no sign of excess in the data
 Data used to set limits on Higgs boson

cross section

H → WW(*) → l+l-νν
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Higgs Cross Section Limit  per
Experiment

σ/σSM=5

 Cross Section limits from each experiment
– MH=115 GeV: σlimit factor 4.2 (CDF)-5.3 (D0) above the SM
– MH=165 GeV: σlimit factor 1.8 (CDF)-1.7 (D0) above the SM

• Note the 1σ downward fluctuation by D0 at 170 GeV
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High Mass Higgs Combination

 Higgs excluded at 95% CL at 170 GeV
– Still debates ongoing about the theoretical cross section value
– Most likely theoretical cross section will increase

• That would increase the exclusion range
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Beyond the Standard Model
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 Large fine-tuning required:
– mH<<mPl

 Accounts for just 4% of the
Universe
– No dark matter candidate
– Cosmological constant problem

 No prediction for
– fundamental constants, unification of

forces, number of generations, mass
values and hierarchy of SM particles,
anything to do with gravity

m2
H ≈ (200 GeV)2 = m2

H
tree + δ m2

H
top + δ m2

H
gauge + δ m2

H
higgs

M. Schmaltz, ICHEP 02

Problems of the Standard Model
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What’s Nice about SUSY?

 Radiative corrections to Higgs
acquire SUSY corrections:
– No/little fine-tuning required
– Particles masses must be near

EWK scale

 Unification of forces possible
 Dark matter candidate exists:

– lightest neutral gaugino

 Changes relationship between
mW, mtop and mH:
– Also consistent with precision

measurements of MW and mtop

with SUSY
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Supersymmetry (SUSY)

 SM particles have supersymmetric partners:
– Differ by 1/2 unit in spin

• Sfermions (squarks, selectron, smuon, ...): spin 0
• gauginos (chargino, neutralino, gluino,…): spin 1/2

 No SUSY particles found as yet:
– SUSY must be broken: breaking mechanism determines phenomenology
– More than 100 parameters even in “minimal” models!

γ

G~G
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Mass Spectrum and Unification

 Lightest SUSY particle (χ1
0) is Dark Matter candidate (if stable)

 Models predict mass relations: M(g)≈3M(χ 1±) ≈6M(χ 10)

ewk scale GUT scale

~
~ ~ ~

Colored
particles

Weak
particles



38

 Strong interaction => large
production cross section
– for M(g) ≈ 300 GeV/c2:

• 1000 event produced/ fb-1

– for M(g) ≈ 500 GeV/c2:
• 1 event produced/ fb-1

Generic Squarks and Gluinos

 Squark and Gluino
production:
– Signature: jets and Et

~

Missing Transverse 
Energy

Missing Transverse 
Energy

Jets

Phys.Rev.D59:074024,1999

)0.2(~~ TeVsgqpp −=→

)(2/)( ~~ GeVMM gq +

103

1σ
 (p

b)

10-3

10-6

10-9

300 500 700

~

ET
miss
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Squarks and Gluinos
 Squark and Gluino production:

– Signature: jets and ET
miss

– At Tevatron no long cascades to
leptons expected:

• Lepton veto applied
 Analysis optimized depending on

mass hierarchy

m(q) >> m(g) m(q) ≈ m(g) m(q)<<m(g)~~~~ ~ ~

4j+ET

3j+ET
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Supersymmetry Parameter Space

M(g)>308 GeV, M(q)>379 GeV~ ~

NB: up to 10 GeV differences depending on treatment of theoretical cross section uncertainties
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Trileptons: Another Look for SUSY

 Search for partners of W
and Z boson
– Decaying via leptons

 Signal:
– 3 leptons and missing ET

~
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The Trilepton Data

 Also consistent with background expectations
– M(chargino)>140 GeV/c2  at 95% confidence level
– rather model-dependent though
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Exclusion of GUT scale parameters

 Nice interplay of hadron colliders and e+e- colliders:
– Similar sensitivity to same high level theory parameters via very different

analyses
– Tevatron is starting to probe beyond LEP in mSUGRA type models
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Beyond SUSY
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Confusion among Theorists?

[Hitoshi Murayama]
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Solving the Hierarchy Problem
with Extra Dimensions
 String theory:

– There are more than 3 spatial
dimensions

 Large Extra Dimensions
(Arkhani-Hamed, Dimopoulos, Dvali)

– Electroweak and strong
interaction live in our
dimensions

– Gravity lives also in extra
dimensions

– R=radius of extra dimensions
• R=100 µm - 1 fm for n=2-7

G

MPl
2 ~ RnMPl(4+n)

(2+n) 
Other models:
e.g. Randall-Sundrum
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Possible Experimental Signatures

Virtual exchange Direct emission
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Dielectron and Diphoton
Mass Spectra

 Data agree with background prediction
– Slight excess in CDF ee spectrum at 240 GeV (prob.~0.6%)

• 50 events on a background of 27

– Not clear if observed by D0 also

ee ee+γγ
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    High Mass ee and γγ
 Anomalous in diphoton or dielectron mass spectrum predicted in

– Resonance: Z’ models (spin 1) and Randall-Sundrum Graviton (spin 2)
– Hard tail: large ED model (ADD)

Ms>2.1-1.3 TeV for Ndim=1-7MZ’>966 GeV for SM-like Z’
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preliminaryL=1 fb-1

Conclusions and Outlook
 Tevatron + experiments operating well

 Analyses based on up to 3 fb-1

 Already >4.5 fb-1 on tape
 Physics result cover broad range:

 QCD thoroughly being tested:
 works very well even in complicated final states!
 Precision between 2 and 50%

 Higgs boson constraints at 95% CL:
 Indirect (mW and mtop): mH<154 GeV/c2

 Direct searches: mH ≠ 170 GeV/c2

 Searches beyond the Standard Model
 Many searches but no sign of new physics yet

 Valuable input for the LHC
 Testing background predictions for new

physics searches
 Higher order QCD calculations
 MC programs

 Develop search strategies
 Although may be lot easier at the LHC
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 Valuable input for the LHC
 Testing background predictions for new

physics searches
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 MC programs

 Develop search strategies
 Although may be lot easier at the LHC

~40gg->H (120 GeV)

~10χ+
1χ

0
2 (2x150 GeV)

~300Z’ (1 TeV)

~20000gg (2x400 GeV)

~1000qq (2x400 GeV)

~100tt (2x172 GeV)

~10W± (80 GeV)

σ(Tevatron)
σ(LHC)

Process (mass)

Hopefully we are at the verge of making a striking discovery!
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CDF Multi-Muon Study aka “Ghosts”

 Recent preprint (0810.5357) discusses excess of muons
– Muons have anomalously high impact parameters:

• Lifetime: τ≈20 ps
– There are extras muons in these events
– Considered backgrounds due to b-decays, punch-through, decay-in-flight

 Unclear if this is due to a signal or a miscalculated background
– Would be interesting to see if HERA experiments see this
– Warning: very difficult analysis (e.g. hadronic interactions, punch-

through,…)

“ghosts”
background

1.13 x 1061.42 x 106N(extra µ)≥0

0.39 x 1041.02 x 104N(extra µ)≥2

0.94 x 1051.41 x 105N(extra µ)≥1

BackgroundData


