ZEUS F_L measurement

Shima Shimizu (University of Tokyo) on behalf of the ZEUS collaboration

Deep Inelastic Scattering

• DIS kinematics can be described by

$$Q^{2} = -q^{2} = -(k - k')^{2}$$
 $x = \frac{Q^{2}}{2p \cdot q}$ $y = \frac{p \cdot q}{p \cdot k}$

Q²: Virtuality → probing power x : Bjorken scaling variable

 \rightarrow momentum fraction of struck quark

y : Inelasticity

 $Q^2 = sxy$ \sqrt{s} = Beam centre of mass energy

• DIS cross section can be written with structure functions: F_2 , F_L

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4} (1+(1-y)^2) \left[F_2(x,Q^2) - \frac{y^2}{Y_+} F_L(x,Q^2) \right] \quad \text{(ignoring xF_3)}$$

$$\text{(ignoring xF_4)}$$

$$\text{(ignoring xF_4)}$$

SFs reflect momentum distribution of partons in the proton

Structure functions; F₂, F_L

 $F_2 \longrightarrow$ Total number of quarks

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4}Y_{+}\left[F_2(x,Q^2) - \frac{y^2}{Y_{+}}F_L(x,Q^2)\right]$$

 \rightarrow Also indirectly sensitive to gluon distribution.

$$F_2 = \sum A_q x(q + \overline{q}) \qquad \frac{\partial F_2}{\partial \ln Q^2} \propto xg$$

 $F_L \longrightarrow$ Direct sensitivity to gluon dynamics.

- F_L proportional to longitudinal photon interacting with proton.
- In nQPM (Callan-Gross relation, assumes spin $\frac{1}{2}$ quarks) $F_L = 0$
- gluon emission in the proton $\rightarrow F_L \neq 0$ i.e. F_L directly reflects gluon dynamics in the proton. at LO $F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_{q} e_q^2 \left(1 - \frac{x}{z} \right) zg(z) \right]$ gluon PDF

Measurement of
$$F_L$$
 is important for understanding of proton structure and QCD.

Measurement of F_L

• What we measure is reduced cross section

$$\widetilde{\sigma} = \frac{Q^2 Y_+}{2\pi\alpha^2} \frac{d\sigma^2}{dx dQ^2} = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$$

• F_L contribution is sizable only at high-y

 \rightarrow Measurement at the region with **highest possible y** will show F_L contribution.

• For direct extraction of F_L

Difference of DIS cross sections at the same (x, Q^2) but the different y

$$y = \frac{Q^2}{sx}$$

 \rightarrow different beam energy

F_L at **HERA**

- HERA: e-p collider
 - Crucial for low-x physics
 - gluon and Sea quarks
- F_L@HERA : gluon dominant
 → dynamics of gluon

- Data were taken with the lower proton beam energy than nominal $(E_p = 920 \text{GeV})$.
 $-E_p = 460 \text{GeV} : 14 \text{pb}^{-1}$ (2007/March May)
 - $E_p = 575 \text{GeV}: 8 \text{pb}^{-1}$ (2007/June)

DIS to be measured for $\boldsymbol{F}_{\rm L}$

DIS events: identified by scattered electron

High-y

$$y_{\text{meas.}} = 1 - \frac{E'_e}{2E_e} (1 - \cos \theta_e) \longrightarrow$$

 \rightarrow low energy electron

• Measurement at low-Q²

$$Q_{\rm meas.}^2 = 2E_e E'_e (1 + \cos\theta_e)$$

 \rightarrow low scattering angle

- Important
 Electron reconstruction should be well understood.
 - keys: Good control of photoproduction background is required.

What we need;

Unbiased trigger

- ZEUS has E-pz filter DIS events:
$$\Sigma (E-p_z) \sim 2E_{ebeam}$$

- Electron finding with high efficiency
- Good rejection and understanding of photoproduction background

Electron reconstruction in ZEUS

- Electron energy is calibrated on cell-by-cell basis using Double Angle method and cross-checked with;
 - $J/\psi \rightarrow e+e-$
 - QED compton
 - DIS
 - → Ee scale uncertainty: $\pm 2\%$ @Ee=5GeV → $\pm 1\%$ @Ee=15GeV

Background

Main background : Photoproduction (PHP) events.

- Electron goes through beampipe but hadron is misidentified as electron.
 - \rightarrow Event mis-reconstructed as DIS.

Severe in high-y region (=low E_e).

$$\pi^{\pm} \qquad \leftarrow \text{ rejected by shower shape study.} \\ \pi^{0} \rightarrow 2\gamma \quad \leftarrow \text{ rejected by track requirement.}$$

• Even after rejection, some PHP events remain.

Need to be understood.

Compare PHP MC to PHP data sample. Two samples selected:
 Tagged and enriched samples → See later.

γ rejection: Backward tracking

 $\pi^{0} \rightarrow 2\gamma$

- Track requirement is the only way to reject photons from π^0 .
- Track reconstruction is difficult at low angle.
 - ZEUS: $\theta_{e} < \sim 154^{\circ}$ is the safe region
- New tool is developed for backward region.

Idea: Create a road from

- e-candidate \rightarrow energy and position
- charge: known from the beam polarity
- event vertex: precisely measured from hadronic activity

and perform **hit finding** around the road.

Hit Finding

- The result of hit finding is evaluated by Hit Fraction.
 Hit Fraction = [N of found hits] / [N of expected hits]
- They are well described by MC.

- Requirement of certain values of Hit Fraction.
 - Good efficiency for DIS. (> \sim 90%).
 - Good rejection power for PHP events.
 - Similar as track at $\theta_{e} < 154^{\circ}$.
 - Large applicable region: Down to $\theta_e < 168^\circ$

PHP events tagged by 6m Tagger

- 6m tagger located downstream of electron beam.
- Direct detection of PHP electrons with good acceptance for limited W range.
 - ~25% of W range of PHP distribution.

Understanding of PHP events

- Fraction of each sub-process in PHP MC is reweighted based on ZEUS σ_{tot} measurement.
- Overall normalization factor is extracted by 6m-tagged events.
 - Cross check is done with PHP enriched sample:
 - medium probablity electron candidate
 - low E-pz
 - \rightarrow Obtained factor is in good agreement with 6m tagger analysis.
- Detailed understanding of fake-e from π^{\pm} still to be done.
 - Loose criteria on shower shape is applied.
 - Keep good efficiency for DIS.
 - π^0 is already well rejected by tracking.
 - \rightarrow To be conservative on PHP normalization uncertainty.
 - \pm ~15% systematic uncertainty.

Sample & Event Selection

• Sample

$$- E_{p} = 920 \text{ GeV} \left(\sqrt{s} = 318 \text{ GeV}\right) : 2006 \text{ e+ data} \quad 32.8 \text{ pb}^{-1}$$
$$- E_{p} = 460 \text{ GeV} \left(\sqrt{s} = 225 \text{ GeV}\right) : 2007 \text{ e+ data} \quad 14.0 \text{ pb}^{-1}$$

Event Selection

The same event selection is applied for both samples.

- Electron candidate with
 - Energy > 4 GeV
 - Radius on end-plate of the drift chamber > 20cm ($\theta_{e} < 168^{\circ}$)
 - Enough hits at hit finding
- $-42 \text{ GeV} < \Sigma (E\text{-}pz) < 65 \text{ GeV}$
- Well reconstructed vertex with $|Z_{vtx}| < 30$ cm

Control Plots

MC description is reasonable but not perfect.

• DIS MC does not have F_L .

Cross section measurement

- Kinematic reconstruction is done by Ee, θ_e. (Electron method)
 Good resolution at high-y region.
- Bins are defined in (y,Q²) plane.
 - Based on resolution.
 - $-E_e > 6 \text{ GeV}$
- The same binning is used for the two samples.
- Most of bins have acceptance above 60%.
 - \rightarrow Good acceptance.

PHP contamination

• Estimated PHP contamination is less than 15% in cross section measurement with both beam energies.

Systematic checks

Following systematic uncertainties are taken into account. They are estimated conservatively.

- Energy scale
- Electron finding
 - Looser and tighter criteria on electron shower shape study.
- Photoproduction normalization
- Position reconstruction
 - 4mm in both x and y direction to cover the effect from possible misalignment of detectors.
- Hit Fraction threshold
- Σ (E-pz) threshold
- $|Z_{vtx}|$ thresholds

Reduced cross sections (vs. y)

- Cross section is measured up to $y \sim 0.76$.
- They are compared to predictions from ZEUS-JETS PDFs.

Reduced cross sections (vs. x) ZEUS

If $F_L \neq 0$, F_L contribution should be indirectly visible as turnover at low-x.

Direct extraction from the two sets of cross sections.

• Cross sections from both beam energies are compared to predictions from ZEUS-JETS PDFs.

ZEUS

ZEUS F_L from two beam energies with conservative uncertainties.

 \rightarrow Further improved measurement to come.

- Many systematic uncertainty will be tightened. (e.g. relative lumi.)
- Third beam energy Extention to lower energy electrons.

Summary

- ZEUS is measuring F_L.
 - Based on e⁺p data with $E_p = 920$ GeV and $E_p = 460$ GeV.
 - New tracking technology is established.
 - PHP background data have being analyzed by using 6m tagger.
- Further improvement can be expected.
 - We have $E_p = 575$ GeV data of ~8pb⁻¹.
 - Further understanding of systematic uncertainties will be done.