

Predicting and understanding supersymmetry

Peter Wienemann University of Bonn

Work in collaboration with:

Philip Bechtle (DESY), Klaus Desch and Mathias Uhlenbrock (U Bonn)

DESY seminar December 15, 2009 Hamburg

Understanding the Standard Model

Much work went into SM fits:

- very precise measurements
- equally precise theoretical calculations (→ radiative corrections)
- $\rightarrow \mathbf{G}_{\mathsf{F}}, \, \alpha_{\mathsf{s}}(\mathsf{M}_{\mathsf{Z}}^{\ 2}), \, \Delta \alpha_{\mathsf{em}}^{(5)}(\mathsf{M}_{\mathsf{Z}}^{\ 2}), \, \mathsf{m}_{\mathsf{Z}}, \\ \mathbf{m}_{\mathsf{t}}, \, \mathsf{m}_{\mathsf{H}}$

Similarly, need to fit parameters of more complex extended theory if BSM physics is found

SUSY Playground

SUSY Playground

Supersymmetry

Deter Wienemann: Predicting and understanding Supersymmetry

Despite of tremendous success, SM also exhibits shortcomings:

- Instability of the Higgs boson mass
- No dark matter candidate
- Unification of gauge couplings impossible
- ...

Remedy could be provided by introduction of single additional symmetry:

Bosons
$$\leftrightarrow$$
 Fermions ($\Delta s=1/2$)

Entails introduction of additional particles to SM. Since still undiscovered, SUSY must be broken.

To cure shortcomings of SM, SUSY particles must be light (~ O(1) TeV)

 \rightarrow LHC and ILC will decide about fate of SUSY

SUSY parameters

Minimal supersymmetric SM (MSSM): 105 (!) new parameters

Most new parameters just parametrise our ignorance about SUSY breaking mechanism

Specific models of SUSY breaking have typically only 5 parameters

Example: mSUGRA:

- tan β (ratio of Higgs VEVs)
- A₀ (common trilinear coupling parameter)
- M₁₀ (common gaugino mass parameter)
- M_0 (common scalar mass parameter)
- $sign(\mu)$ (sign of Higgsino mass parameter)

Challenges for parameter fits

Stumbling block: observables ≠ parameters

```
Observables: masses, asymmetries, rates, ...
Parameters: \alpha_s, tan \beta, M_1, A_{\tau}, ...
```

Establish mapping

parameters \rightarrow observables

is straightforward (but achieving highest precision is challenging). Unfortunately mapping cannot be inverted. Thus constructing mapping observables \rightarrow parameters is cumbersome (\rightarrow lots of CO₂).

Tools for SUSY parameter analysis

SUSY/BSM fit programs

- Fittino (P. Bechtle, K. Desch, P. Wienemann, *et al.*) http://www-flc.desy.de/fittino
- SFitter (R. Lafaye, T. Plehn, D. Zerwas, *et al.*)
- Mastercode (O. Buchmüller, R. Cavanaugh, A. De Roeck, S. Heinemeyer, G. Isidori, F. Ronga, G. Weiglein, *et al.*)
- (Gfitter) (H. Flächer, M. Goebel, J. Haller, A. Höcker, K. Mönig, J. Stelzer, *et al.*) http://gfitter.desy.de
- Various other groups (e. g. B. Allanach *et al.*)

Fittino

- C++ program for SUSY model testing and SUSY parameter analysis
- Currently supported SUSY models: mSUGRA, GMSB, AMSB, MSSM24, NMSSM
- Can handle many measurements from low energy experiments, LEP/SLC, Tevatron, cosmology, LHC and LC
- Parameter analysis using full correlation information performed by either:
 MINUIT
 - Simulated Annealing
 - Markov Chain Monte Carlo (MCMC)
- Theory predictions from SPheno (W. Porod), Mastercode (O. Buchmüller *et al.*)
- Limits from HiggsBounds (P. Bechtle *et al.*)

Iterative parameter analysis

Simulated annealing

Simulated annealing in action

Markov chain = sequence of points x_i (i=1,...n) in parameter space with associated likelihood $\mathcal{L} = \exp\left(-\frac{\chi^2}{2}\right)$

New point x_{n+1} randomly chosen according to proposal PDF is added to chain if $\mathcal{L}(x_{n+1}) > \mathcal{L}(x_n)$

Otherwise it is accepted with probability $\mathcal{L}(x_{n+1})/\mathcal{L}(x_n)$

If proposal PDF is chosen properly, sampling density of points x_i in Markov chain proportional to likelihood

Sampling behaviour of MCMCs

Start value = 8 Start value = 11 anβ starting point anβ starting point tanβ = 8 $\tan\beta = 11$ tanß tanβ 0 200 250 300 350 400 # MCMC steps n # MCMC steps n anβ starting point anβ starting point $\tan\beta = 11$ tanβ = 8 tanβ ិត្ត 15 n # MCMC steps n # MCMC steps

Sufficient chain length essential for unbiased results

SUSY forecast

SUSY forecast 25 years ago

Peter Wienemann: Predicting and understanding Supersymmetry

tagestheme

die SUSY-Vorhersage

"Experiments within the next five to ten years will enable us to decide whether supersymmetry at the weak interaction scale is myth or reality"

Hans-Peter Nilles, 1984

die SUSY-Vorhersage

Can look for SUSY effects in already available data from LEP, Tevatron, SLC, B/K physics, $(g-2)_{\mu}$ and astrophysics.

"Low energy" precision observables exhibit sensitivity to SUSY parameters, in particular

Complete LE observable list

Observable	Experimental	Uncertainty		Exp. Reference
	Value	stat	syst	
$\mathcal{B}(B \rightarrow s\gamma)/\mathcal{B}(B \rightarrow s\gamma)_{SM}$	1.117	0.076	0.096	[47]
$\mathcal{B}(B_s \rightarrow \mu \mu)$	$< 4.7 \times 10^{-8}$			[47]
$\mathcal{B}(B_d \rightarrow \ell \ell)$	$< 2.3 \times 10^{-8}$			[47]
$\mathcal{B}(B \to \tau \nu) / \mathcal{B}(B \to \tau \nu)_{\rm SM}$	1.15	0.40		[48]
$\mathcal{B}(B_s \to X_s \ell \ell) / \mathcal{B}(B_s \to X_s \ell \ell)_{SM}$	0.99	0.32		[47]
$\Delta m_{B_s} / \Delta m_{B_s}^{SM}$	1.11	0.01	0.32	[49]
$\frac{\Delta m_{B_s} / \Delta m_{B_s}^{SM}}{\Delta m_{B_d} / \Delta m_{B_s}^{SM}}$	1.09	0.01	0.16	[47, 49]
$\Delta \epsilon_K / \Delta \epsilon_K^{SM}$	0.92	0.14		[49]
$\mathcal{B}(K \to \mu \nu) / \mathcal{B}(K \to \mu \nu)_{\rm SM}$	1.008	0.014		[50]
$\mathcal{B}(K \to \pi \nu \bar{\nu}) / \mathcal{B}(K \to \pi \nu \bar{\nu})_{SM}$	< 4.5			[51]
$a_{\mu}^{\exp} - a_{\mu}^{SM}$	30.2×10^{-10}	8.8×10^{-10}	2.0×10^{-10}	[52, 53]
$\sin^2 \theta_{\text{eff}}$	0.2324	0.0012		[46]
Γ_Z	$2.4952 {\rm GeV}$	$0.0023 { m GeV}$	$0.001~{ m GeV}$	[46]
R_{I}	20.767	0.025		[46]
R_b	0.21629	0.00066		[46]
R _c	0.1721	0.003		[46]
$A_{fb}(b)$	0.0992	0.0016		[46]
$A_{\rm fb}(c)$	0.0707	0.0035		[46]
A_b	0.923	0.020		[46]
A_c	0.670	0.027		[46]
A_{l}	0.1513	0.0021		[46]
A_{τ}	0.1465	0.0032		[46]
$A_{\rm fb}(l)$	0.01714	0.00095		[46]
$\sigma_{ m had}$	41.540 nb	0.037 nb		[46]
m_h	> 114.4 GeV		$3.0 \mathrm{GeV}$	[54, 55, 56]
$\Omega_{\rm CDM} h^2$	0.1099	0.0062	0.012	[57]
$1/\alpha_{em}$	127.925	0.016		[58]
G_F	$1.16637 \times 10^{-5} \mathrm{GeV}^{-2}$	$0.00001 \times 10^{-5} \mathrm{GeV}^{-2}$		[58]
α_s	0.1176	0.0020		[58]
m_Z	91.1875 GeV	$0.0021 {\rm GeV}$		[46]
m_W	$80.399 \mathrm{GeV}$	$0.025 \mathrm{GeV}$	$0.010~{ m GeV}$	[58]
m_b	$4.20 \mathrm{GeV}$	$0.17 { m GeV}$		[58]
m_t	$172.4 \mathrm{GeV}$	$1.2 \mathrm{GeV}$		59
m_{τ}	$1.77684 { m GeV}$	$0.00017 { m GeV}$		[58]
m_c	$1.27 \mathrm{GeV}$	$0.11 \mathrm{GeV}$		[46]

LE: mSUGRA parameters

Fit of mSUGRA parameters to 35 LE measurements:

LE data favours light SUSY (consistent with findings by MASTERCODE group)

LE: Predicted mass spectra

GMSB, sign(μ)>0, N₅ = 2:

Light SUSY particles favoured

- Preferred region rather stable
- (g-2) and to lesser extent Ωh^2 most constraining

LE: Comparison with LHC potential

Bechtle, Desch, Uhlenbrock, Wienemann

Buchmüller, et al.

Good prospects for early BSM hints at LHC

LE: Predicted LSP and NLSP masses

- DM relic density prefers co-annihilation region
- Seeing excess might be easy, measuring certain processes might be more difficult (soft taus!)

Projection to LHC

Fit result of mSUGRA fit to LE data accidentally close to experimentally well studied SUSY benchmark point:

				SPS1a values
aneta	13.2	\pm	7.2	10
$M_{1/2}~({ m GeV})$	331.5	\pm	86.6	250
$M_0~({ m GeV})$	76.2		$+79.2 \\ -29.1$	100
$A_0 ~({ m GeV})$	383.8	\pm	647	-100

 \rightarrow dare projection to LHC era based on SPS1a studies

Understanding SUSY

SUSY mass reconstruction at LHC

LHC observable list

Observable	Nominal	Uncertainty							
	Value	1 fb^{-1}	10 fb^{-1}	300 fb^{-1}	LES_1	$LES_{10,300}$	JES_1	$JES_{10,300}$	syst.
m_h	109.6		1.4	0.1		0.1			
m_t	172.4	1.1	0.05	0.01			1.5	1.0	
$m_{\tilde{\chi}_1^{\pm}}$	180.2			11.4				1.8	
$\sqrt{m_{\tilde{\ell}_L}^2 - 2m_{\tilde{\chi}_1^0}^2}$	148.8			1.7		0.1			6.0
$m_{\bar{g}} - m_{\bar{\chi}_{1}^{0}}$	507.7		13.7	2.5				5.1	10.0
$\sqrt{m_{\tilde{q}_R}^2 - 2m_{\tilde{\chi}_1^0}^2}$	531.0	19.6	6.2	1.1			22.7	4.5	10.0
$m_{\tilde{g}} - m_{\tilde{b}_1}$	88.7			1.5				0.9	
$m_{\bar{g}} - m_{\bar{b}_{2}}$	56.8			2.5				0.6	
$m_{\ell\ell}^{\max}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{R}})$	80.4	1.7	0.5	0.03	0.16	0.08			
$m_{\ell\ell}^{\max}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{4}^{0}}, m_{\tilde{\ell}_{L}})$	280.6		12.6	2.3		0.28			
$m_{\tau\tau}^{\max}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\tau}_{1}})$	83.4	12.6	4.0	0.73			4.2	0.8	5.7
$m_{\ell \ell q}^{\max}(m_{\tilde{\chi}_1^0}, m_{\tilde{q}_L}, m_{\tilde{\chi}_2^0})$	452.1	13.9	4.2	1.4			22.7	4.5	
$m_{\ell q}^{\text{low}}(m_{\tilde{\ell}_R}, m_{\tilde{q}_L}, m_{\tilde{\chi}_2^0})$	318.6	7.6	3.5	0.9			16.2	3.2	
$m_{\ell q}^{high}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{R}}, m_{\tilde{q}_{L}})$	396.0	5.2	4.5	1.0			19.9	4.0	
$m_{\ell \ell q}^{\text{thres}}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{R}}, m_{\tilde{q}_{L}})$	215.6	26.5	4.8	1.6			10.8	2.2	
$m_{\ell\ell b}^{\text{thres}}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{R}}, m_{\tilde{b}_{1}})$	195.9		19.7	3.6				2.0	
$m_{tb}^{w}(m_{t}, m_{\tilde{t}_{1}}, m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{g}}, m_{\tilde{b}_{1}})$	359.5	43.0	13.6	2.5			18.0	3.6	
$\frac{\mathcal{B}(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell) \times \mathcal{B}(\tilde{\ell}_{R} \rightarrow \tilde{\chi}_{1}^{0} \ell)}{\mathcal{B}(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}_{1} \tau) \times \mathcal{B}(\tilde{\tau}_{1} \rightarrow \tilde{\chi}_{1}^{0} \tau)}$	0.076	0.009	0.003	0.001					0.008
$\frac{\mathcal{B}(\bar{g} \rightarrow b_2 b) \times \mathcal{B}(b_2 \rightarrow \bar{\chi}_2^0 b)}{\mathcal{B}(\bar{g} \rightarrow \bar{b}_1 b) \times \mathcal{B}(\bar{b}_1 \rightarrow \bar{\chi}_2^0 b)}$	0.168			0.078					

Caveat emptor:

- No decay chain ambiguities considered
 - Uncertainties on theoretical calculations (mostly) not considered
 - Mostly no information on LHC production rates

LHC: mSUGRA parameters

LHC: mSUGRA parameters vs. luminosity

Precision on mSUGRA parameters for 1, 10 and 300 fb⁻¹:

LHC: sign(µ)

Perform fits to toy datasets generated by smearing observables within uncertainties

 χ^2 correlations for fits with sign(μ)>0 and sign(μ)<0 to same toy dataset:

Any discrete "degree of freedom" (parameter, ambiguity, ...) can be treated this way

LHC: Impact of decay chain ambiguities

Certain final states at LHC cannot be unambiguously assigned to single decay chain

Approach: Perform toy fits for all possibilities and choose best fit (smallest χ^2)

Proof-of-principle: Consider following two-fold ambiguity

correct interpretation:

wrong interpretation:

 $egin{aligned} &m_{\ell\ell}^{\max}(m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_4^0},m_{ ilde{\ell}_L})\ &m_{\ell\ell}^{\max}(m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_4^0},m_{ ilde{\ell}_R}) \end{aligned}$

LHC: Impact of decay chain ambiguities

39

Probability to choose right or wrong interpretation can be obtained again from χ^2 correlation for fits with correct and wrong interpretation to same toy dataset:

Role of LE measurements in LHC era

Peter Wienemann: Predicting and understanding Supersymmetry

LHC (1 fb⁻¹):

Parameter	Best Fit		Uncertainty
$\operatorname{sign}(\mu)$	+1		
aneta	9.1	\pm	3.7
$A_0 ({\rm GeV})$	-131.8	\pm	742.1
$M_0 ~({\rm GeV})$	100.2	\pm	4.2
$M_{1/2}~({ m GeV})$	249.7	\pm	6.7

LE+LHC (1 fb⁻¹):

Parameter	Best Fit		Uncertainty
$\operatorname{sign}(\mu)$	+1		
$\tan \beta$	10.2	\pm	2.3
A_0 (GeV)	-76.3	\pm	184
M_0 (GeV)	100.6	\pm	3.4
$M_{1/2}$ (GeV)	250.2	\pm	5.3

LHC (300 fb⁻¹):

Parameter	Best Fit		Uncertainty
$\operatorname{sign}(\mu)$	+1		
aneta	9.98	\pm	0.35
A_0 (GeV)	-100.2	\pm	11.1
M_0 (GeV)	100.0	\pm	0.39
$M_{1/2}$ (GeV)	250.0	\pm	0.30

LE+LHC (300 fb⁻¹):

Parameter	Best Fit		Uncertainty
$\operatorname{sign}(\mu)$	+1		
aneta	10.00	\pm	0.36
A_0 (GeV)	-99.1	\pm	12.0
$M_0 ({\rm GeV})$	100.00	\pm	0.39
$M_{1/2}~({ m GeV})$	250.01	\pm	0.33

At the beginning of LHC running LE data may still be important (even in constrained mSUGRA model)

LE+LHC: sign(µ)

SUSY mass spectra derived from LE and LHC (1 fb⁻¹ and 300 fb⁻¹) observables assuming mSUGRA model:

mSUGRA, LE+LHC1:

MSSM18

So far, all analyses done within mSUGRA model (= strong assumption on SUSY breaking mechanism)

Can also perform analysis in more general SUSY model

Assumptions:

- no CP violation in SUSY sector (all phases = 0)
- no mixing between sfermion generations
- no mixing within first two sfermion generations
- universality of same-type sfermion mass parameters in first two generations
- \rightarrow MSSM18

LE+LHC+ILC: Mass spectrum

SUSY mass spectra derived from LE and LHC (300 fb⁻¹) and optionally ILC observables assuming MSSM18 model:

LE+LHC(+ILC): MSSM18

Parameter	Nominal value	ILC Fit		$\sigma_{ t LE+LHC 300}$	$\sigma_{ m LE+LHC300+ILC}$
$M_{\tilde{\ell}_L}$ (GeV)	194.31	194.315	\pm	6.4	0.068
$M_{\tilde{\ell}_{R}}^{L}$ (GeV)	135.76	135.758	\pm	10.5	0.071
$M_{\tilde{\tau}_L}$ (GeV)	193.52	193.46	\pm	43.0	0.33
$M_{\tilde{\tau}_R}$ (GeV)	133.43	133.45	\pm	38.2	0.35
$M_{\tilde{q}_L}$ (GeV)	527.57	527.61	\pm	3.4	0.64
$M_{\tilde{q}_R}$ (GeV)	509.14	509.3	\pm	9.0	9.0
$M_{\tilde{b}_R}$ (GeV)	504.01	504.2	\pm	33.3	2.4
$M_{\tilde{t}_L}$ (GeV)	481.69	481.6	\pm	15.5	1.5
$M_{\tilde{t}_R}$ (GeV)	409.12	409.2	\pm	103.8	1.6
aneta	10	10.01	\pm	3.3	0.29
$\mu ~({ m GeV})$	355.05	355.02	\pm	6.2	0.88
$X_{\tau} \; (\mathrm{GeV})$	-3799.88	-3795.1	\pm	3053.5	46.6
$X_t \; (\mathrm{GeV})$	-526.62	-526.8	\pm	299.2	4.7
$X_b \ ({ m GeV})$	-4314.33	-4252.1	\pm	5393.6	728.7
$M_1 \; ({\rm GeV})$	103.15	103.154	\pm	3.5	0.046
$M_2 ~({ m GeV})$	192.95	192.95	\pm	5.5	0.11
$M_3 ~({ m GeV})$	568.87	568.66	\pm	6.9	1.65
$m_A \; ({\rm GeV})$	359.63	360.07	\pm	+1181 -99.3	1.83

ILC reduces uncertainties by 1 to 2 orders of magnitude (except \tilde{q}_{R} mass) \rightarrow more direct measurements + strong decrease of correlations

Cold dark matter relic density

Cold dark matter relic density inferred from collider measurements:

Next steps: All decay chain ambiguities

Consider all possible decay chain ambiguities in parameter analysis of LHC data

First steps started:

Next steps: Algorithm optimisation

Prudent

Parameter analysis is CPU intensive

Optimised algorithm settings are crucial \rightarrow green Fittino

Example: Optimised proposal density distribution for Markov chain

Next steps: LHC production rates

Krämer, Lindert, O'Leary

Conventional calculation of production rates at LHC too slow.

Investigated way out:

- Prospino look-up table (only 2 parameters: squark and gluino mass)
- Calculation of BRs by SPheno/SDecay
- Parametrised detector response

LO cross section [pb] for pp > squark_{L/R} gluino using Prospino2.1

More plans

- Inclusion of SUSY direct search limits from LEP and Tevatron (Mainz, Bonn)
- Inclusion of indirect dark matter search results (Hamburg)
- Systematic comparison of different RGE codes (Göttingen)
- Inclusion of uncertainties/correlations of theory predictions (Würzburg, DESY, Heidelberg, ...)
- Calculator speed-ups (Würzburg)
- ...
- \rightarrow very lively activity

Summary

- Constraining SUSY parameter space will be essential task in upcoming years (both if ∃ SUSY and if ∄ SUSY)
- Several powerful SUSY fitting frameworks developed during recent years
- Obtained fascinating results with them:
 - Light SUSY preferred by LE precision data
 - Demonstration of possible LHC and ILC potential
- Nevertheless some issues still need to be included in parameter analyses (decay chain ambiguities, LHC rates, uncertainties of calculations, ...)
- Joint effort by experimentalists (from different experiments) and theorists has started to address open issues
- Many interesting new results can be expected soon ...