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Data analysis in HEP
Particle physics experiments are expensive

e.g. LHC, ~ $1010   (accelerator and experiments)

the competition is intense
(ATLAS vs. CMS) vs. Tevatron

and the stakes are high:

4 sigma effect

5 sigma effect

So there is a strong motivation to know precisely whether one's
signal is a 4 sigma or 5 sigma effect.
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Frequentist vs. Bayesian approaches
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

The preferred hypotheses (theories, models, parameter values, ...) 
are those for which our observations would be considered ‘usual’.

In Bayesian statistics, interpretation of probability extended to
degree of belief (subjective probability).  

Use Bayes' theorem to relate (posterior) probability for hypothesis 
H given data x to probability of x given H (the likelihood):  

Need prior probability, 
π(H), i.e., before seeing 
the data.
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Statistical vs. systematic errors
Statistical errors:  

How much would the result fluctuate upon repetition of 
the measurement?

Implies some set of assumptions to define probability of 
outcome of the measurement.

Systematic errors:

What is the uncertainty in my result due to 
uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty;
modelling of measurement apparatus.

Usually taken to mean the sources of error do not vary 
upon repetition of the measurement.  Often result from 
uncertain value of calibration constants, efficiencies, etc.
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Systematic errors and nuisance parameters
Model prediction (including e.g. detector effects) 
never same as "true prediction" of the theory:

x

model:  y
truth:

Model can be made to approximate better the truth by including
more free parameters.

systematic uncertainty ↔ nuisance parameters
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Example:  fitting a straight line
Data:

Model:  measured yi independent, Gaussian:

assume xi and σi known.

Goal:  estimate θ0

(don’t care about θ1).
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Correlation between

causes errors

to increase.

Standard deviations from

tangent lines to contour

Frequentist approach
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The information on θ1

improves accuracy of

Frequentist case with a measurement t1 of θ1
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Bayesian method
We need to associate prior probabilities with θ0 and θ1, e.g.,

Putting this into Bayes’ theorem gives:

posterior    Q likelihood         × prior

← based on previous 
measurement

reflects ‘prior ignorance’, in any
case much broader than
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Bayesian method (continued)

Usually need numerical methods (e.g. Markov Chain Monte
Carlo) to do integral.

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x):

In this example we can do the integral (rare).  We find
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
e.g., a theorist says it should be positive and not too much  greater
than 0.1 "or so", i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.
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A more general fit (symbolic)
Given measurements: 

and (usually) covariances:

Predicted value:

control variable parameters bias

Often take:

Minimize

Equivalent to maximizing L(θ) ∼ e−χ2/2, i.e., least squares same 
as maximum likelihood using a Gaussian likelihood function. 

expectation value
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Its Bayesian equivalent

and use Bayes’ theorem:

To get desired probability for θ, integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator,
σθ same as from χ2 = χ2

min + 1.  (Back where we started!)

Take

Joint probability
for all parameters
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Alternative priors for systematic errors
Gaussian prior for the bias b often not realistic, especially if one
considers the "error on the error".  Incorporating this can give
a prior with longer tails:

π b
(b

)

Represents ‘error
on the error’; 
standard deviation 
of πs(s) is σs.

b
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A simple test
Suppose fit effectively averages four measurements.

Take σsys = σstat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(μ|y):

Usually summarize posterior p(μ|y) 
with mode and standard deviation:

experiment

m
ea

su
re

m
en

t

μ
p(

μ|
y)
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Simple test with inconsistent data
Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.

Posterior p(μ|y):

experiment

m
ea

su
re

m
en

t

μ

p(
μ|

y)

(See also D'Agostini 1999; Dose & von der Linden 1999)
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Example of systematics in a search
Combination of Higgs search channels (ATLAS)

Expected Performance of the ATLAS Experiment:  Detector, 
Trigger and Physics, arXiv:0901.0512, CERN-OPEN-2008-20.

Standard Model Higgs channels considered (more to be used later):
H → γγ
H → WW (*)→ eνμν
H → ZZ(*) → 4l (l = e, μ)
H → τ+τ−→ ll, lh

Used profile likelihood method for systematic uncertainties:
background rates, signal & background shapes.
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Statistical model for Higgs search
Bin i of a given channel has ni events, expectation value is

Expected signal and background are:

μ is global strength parameter, common to all channels.
μ = 0 means background only, μ = 1 is SM hypothesis.

btot, θs, θb are
nuisance parameters
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The likelihood function

θ represents all nuisance parameters, 
e.g., background rate, shapes 

here signal rate is 
only parameter
of interest

The single-channel likelihood function uses Poisson model
for events in signal and control histograms:

The full likelihood function is 

There is a likelihood Li(μ,θi) for each channel, i = 1, …, N.  

data in signal histogram
data in control 
histogram
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Profile likelihood ratio
To test hypothesized value of μ, construct profile likelihood ratio:

Maximized L for given μ

Maximized L

Equivalently use qμ = − 2 ln λ(μ):

data agree well with hypothesized μ → qμ small

data disagree with hypothesized μ → qμ large

Distribution of qμ under assumption of μ related to chi-square
(Wilks' theorem, here approximation valid for roughly L > 2 fb−1):
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p-value / significance of hypothesized μ

Test hypothesized μ by giving
p-value, probability to see data 
with ≤ compatibility with μ
compared to data observed:

Equivalently use significance,
Z, defined as equivalent number
of sigmas for a Gaussian 
fluctuation in one direction: 
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Sensitivity
Discovery:

Generate data under s+b (μ = 1) hypothesis;
Test hypothesis μ = 0 → p-value → Z.

Exclusion:
Generate data under background-only (μ = 0) hypothesis;
Test hypothesis μ = 1.
If μ = 1 has p-value < 0.05 exclude mH at 95% CL.

Presence of nuisance parameters leads to broadening of the
profile likelihood, reflecting the loss of information, and gives
appropriately reduced discovery significance, weaker limits.
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Combined discovery significance

Discovery signficance
(in colour) vs. L, mH:

Approximations used here not 
always accurate for L < 2 fb−1

but in most cases conservative.
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Combined 95% CL exclusion limits
1 − p-value of mH
(in colour) vs. L, mH:
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Fit example: b → sγ (BaBar)
B. Aubert et al. (BaBar), Phys. Rev. D 77, 051103(R) (2008).

Decay of one B fully reconstructed (Btag).
Look for high-energy γ from rest of event.
Signal and background yields from fit to mES in bins of Eγ.

ee-- DD**
ππ

ee++

BBtagtag

BBsignalsignal

XsXs

γγ high-energy γ

"recoil method"
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Fitting mES distribution for b → sγ

Fit mES distribution using 
superposition of Crystal Ball 
and Argus functions:

Crystal
Ball

Argus

shapesrates obs./pred. events in ith bin

log-likelihood:
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Simultaneous fit of all mES distributions
Need fits of mES distributions in 14 bins of  Eγ:

At high Eγ, not enough events to constrain shape,
so combine all Eγ bins into global fit:

Start with no energy dependence, and include one
by one more parameters until data well described.

Shape parameters could vary (smoothly) with Eγ.

So make Ansatz for shape parameters such as
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Finding appropriate model flexibility
Here for Argus ξ parameter, linear dependence gives significant
improvement; fitted coefficient of linear term −10.7 ± 4.2.

Inclusion of additional free parameters (e.g., quadratic E
dependence for parameter ξ) do not bring significant improvement.

So including the additional energy dependence for the shape
parameters converts the systematic uncertainty into a statistical
uncertainty on the parameters of interest.

D. Hopkins, PhD thesis, RHUL (2007).

χ2(1) − χ2(2) = 3.48
p-value of (1) = 0.062
→data want extra par.
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Towards a general strategy (frequentist)

Suppose one needs to know the shape of a distribution.
Initial model (e.g. MC) is available, but known to be imperfect.

Q:  How can one incorporate the systematic error arising from
use of the incorrect model?

A:  Improve the model.

That is, introduce more adjustable parameters into the model
so that for some point in the enlarged parameter space it 
is very close to the truth.

Then use profile the likelihood with respect to the additional
(nuisance) parameters.  The correlations with the nuisance 
parameters will inflate the errors in the parameters of interest.

Difficulty is deciding how to introduce the additional parameters.

In progress together with:  S. Caron, S. Horner, J. Sundermann, E. Gross, O Vitells, A. Alam
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A simple example

The naive model (a) could have been e.g. from MC (here
statistical errors suppressed; point is to illustrate how to
incorporate systematics.)

0th order model
True model 
(Nature) Data
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Comparing model vs. data

In the example shown, the model and data clearly don't agree well.

To compare, use e.g.

Model number of entries ni in ith bin as ~Poisson(νi)

Will follow chi-square distribution for N dof for sufficiently
large ni.
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Model-data comparison with likelihood ratio
This is very similar to a comparison based on the likelihood ratio

where L(ν) = P(n;ν) is the likelihood and the hat indicates
the ML estimator (value that maximizes the likelihood).  

Here easy to show that

Equivalently use logarithmic variable

If model correct, qν ~ chi-square for N degrees of freedom.
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p-values
Using either χ2

P or qν, state level of data-model agreement
by giving the p-value:  the probability, under assumption of the
model, of obtaining an equal or greater incompatibility with the
data relative to that found with the actual data:

where (in both cases) the integrand is the chi-square distribution
for N degrees of freedom,
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Comparison with the 0th order model

The 0th order model gives qν = 258.8,  p = 6 × 10−30
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Enlarging the model
Here try to enlarge the model by multiplying the 0th order
distribution by a function s:

where s(x) is a linear superposition of Bernstein basis 
polynomials of order m:
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Bernstein basis polynomials

Using increasingly high order for the basis polynomials gives
an increasingly flexible function.
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Enlarging the parameter space
Using increasingly high order for the basis polynomials gives
an increasingly flexible function.

At each stage compare the p-value to some threshold, e.g., 0.1 
or 0.2, to decide whether to include the additional parameter.

Now iterate this procedure, and stop when the data do not
require addition of further parameters based on the likelihood
ratio test.  (And overall goodness-of-fit should also be good.)

Once the enlarged model has been found, simply include
it in any further statistical procedures, and the statistical errors
from the additional parameters will account for the systematic
uncertainty in the original model.
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Fits using increasing numbers of parameters

Stop here
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Deciding appropriate level of flexibility

Stop here

says whether data 
prefer additional
parameter

says whether data 
well described overall

When p-value exceeds ~0.1 to 0.2, fit is good enough.
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Issues with finding an improved model
Sometimes, e.g., if the data set is very large, the total χ2 can
be very high (bad), even though the absolute deviation between
model and data may be small.

It may be that including additional parameters "spoils" the
parameter of interest and/or leads to an unphysical fit result
well before it succeeds in improving the overall goodness-of-fit.

Include new parameters in a clever (physically motivated,
local) way, so that it affects only the required regions.

Use Bayesian approach -- assign priors to the new nuisance
parameters that constrain them from moving too far (or use 
equivalent frequentist penalty terms in likelihood).

Unfortunately these solutions may not always be practical.
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Summary and conclusions
Key to covering a systematic uncertainty is to include the 
appropriate nuisance parameters, constrained by all available info.

Enlarge model so that for at least one point in its
parameter space, its difference from the truth is negligible.

In frequentist approach can use profile likelihood (similar with
integrated product of likelihood and prior -- not discussed today).

Too many nuisance parameters spoils information about
parameter(s) of interest.

In Bayesian approach, need to assign priors to (all) parameters.
Can provide important flexibility over frequentist methods.
Can be difficult to encode uncertainty in priors.
Exploit recent progress in Bayesian computation (MCMC).

So, when the LHC announces a 5 sigma effect, let's know 
precisely what the "sigma" means.
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Extra slides 
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Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than naive √n .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 
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Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.



G. Cowan Systematic uncertainties in statistical data analysis page 46

MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf
generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density
e.g. Gaussian centred
about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than naive

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  
if not, only take the step with probability 
If proposed step rejected, hop in place.
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Metropolis-Hastings caveats
Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try starting from a different
point and see if the result is similar.
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H → ZZ(*) → 4l sensitivity
Expected 95% CL upper limit on 
μ = σ / σSM for 5 fb−1 if no Higgs.

Expected discovery significance
(# of σ) of SM Higgs for 30 fb−1

Lower points include systematics

median

±1σ

±2σ
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