Event shapes and jet rates in electron-positron annihilation

Stefan Weinzierl

Universität Mainz

Introduction:	Constants of nature
I.:	Measurement and extraction of α_{s}
II:	Precision calculations
III:	Numerical results

Phys. Rev. Lett. 101, (2008), 162001, arxiv:0807.3241;
arxiv:0904.1145, arxiv:0904.1077

Fundamental constants

- The speed of light $\quad c=299792458 \mathrm{~m} \mathrm{~s}^{-1}$
- Planck's constant $\quad \hbar=1.054571628(53) \cdot 10^{-34} \mathrm{~J}$ s
- Constants associated to fundamental forces:
- Newton's constant
- Electric charge
- Fermi's constant
- Strong coupling constant

$$
\begin{array}{ll}
G_{N} & =6.67428(67) \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \\
e & =1.602176487(40) \cdot 10^{-19} \mathrm{C} \\
G_{F} & =1.16637(1) \cdot 10^{-5} \mathrm{GeV}^{-2}(\hbar c)^{3} \\
\alpha_{s}\left(m_{Z}\right) & =0.1176(20)
\end{array}
$$

- Masses of elementary particles, mixing angles, etc.

In theoretical physics it is common to set $c=\hbar=1$.

The four fundamental forces

We like dimensionless quantities:
Gravitation:

$$
G_{N} m_{p}^{2}=5.9 \cdot 10^{-39}
$$

Electric force:

$$
\alpha=\frac{e^{2}}{4 \pi}=\frac{1}{137}=0.007297
$$

Weak force:

$$
G_{F} m_{W}^{2}=0.0754
$$

Strong force:

$$
\alpha_{s}=\frac{g_{s}^{2}}{4 \pi}=0.118
$$

The fine-structure constant

Measurement at $Q^{2}=0$ (Thomson limit of Compton scattering, quantum Hall effect, anomalous magnetic moment of the electron):

$$
\alpha=\frac{1}{137}
$$

Measurement at $Q^{2}=m_{Z}^{2}$ (LEP, HERA):

$$
\alpha=\frac{1}{128}
$$

The value is larger at higher scales !

Screening

Qualitative understanding:

Imagine a bare charge, which is screened by polarization charges.

At higher energies we probe shorter distances and screening effects are reduced.

Scale-variation of the electro-magnetic coupling

$$
\mu^{2} \frac{d}{d \mu^{2}}\left(\frac{\alpha}{4 \pi}\right)=\frac{4}{3}\left(\frac{\alpha}{4 \pi}\right)^{2}+O\left(\alpha^{3}\right)
$$

Scale-variation of the strong coupling

$$
\mu^{2} \frac{d}{d \mu^{2}}\left(\frac{\alpha_{S}}{4 \pi}\right)=\left(\frac{2}{3} N_{f}-11\right)\left(\frac{\alpha_{S}}{4 \pi}\right)^{2}+O\left(\alpha_{s}^{3}\right)
$$

The slope is negative !

As before:
Fermion loops give a positive contribution: $2 / 3 N_{f}$

But now:
Boson loops give a negative contribution: - 11
For $N_{f} \leq 16$ the sum is negative !
Gross Wilczek, '73, Politzer, '73

Asymptotic freedom

Gross, Politzer and Wilczek: Nobelprize 2004 for the discovery of asymptotic freedom in the theory of the strong interaction.

Measurement of the strong coupling

α_{s} can be measured in a variety of processes:

- Deep inelastic scattering,
- τ-decays,
- heavy quarkonium,
- electron-positron annihilation,
- hadron collisions, ...

The strong coupling from electron-positron annihilation

One possibility: Extract α_{s} from three-jet events in electron-positron annihilation.

Jets: A bunch of particles moving in the same direction

A three-jet event from the Aleph experiment at LEP:

Jet algorithms

Ingredients:

- a resolution variable $y_{i j}$ where a smaller $y_{i j}$ means that particles i and j are "closer":

$$
y_{i j}^{D U R H A M}=\frac{2\left(1-\cos \theta_{i j}\right)}{Q^{2}} \min \left(E_{i}^{2}, E_{j}^{2}\right)
$$

- a combination procedure which combines two four-momenta into one:

$$
p_{(i j)}^{\mu}=p_{i}^{\mu}+p_{j}^{\mu}
$$

- a cut-off $y_{\text {cut }}$ which provides a stopping point for the algorithm.

Event shapes

What experimentalists measure: Event shapes
Example: Thrust

$$
T=\max _{\hat{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \hat{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

For two particles back-to-back one has

$$
T=1
$$

For many particles, isotropically distributed we have

$$
T=\frac{1}{2}
$$

Perturbation theory

Due to the smallness of the coupling constants α and α_{s}, we may compute an observable at high energies reliable in perturbation theory,

$$
\langle O\rangle=\frac{\alpha_{s}}{2 \pi}\langle O\rangle_{L O}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\langle O\rangle_{N L O}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3}\langle O\rangle_{N N L O}+\ldots
$$

Feynman diagrams contributing to the leading order:

Leading order proportional to α_{s} !

The need for precision

Objectives for LHC: Extract fundamental quantities like α_{s} to high precision.
Theoretical predictions are calculated as a power expansion in the coupling. Higher precision is reached by including the next higher term in the perturbative expansion.

State of the art:

- Third or fourth order calculations for a few selected quantities (R-ratio, QCD β function, anomalous magnetic moment of the muon).
- NNLO calculations for a few selected $2 \rightarrow 2$ and $2 \rightarrow 3$ processes.
- NLO calculations for $2 \rightarrow n(n=2,3,4)$ processes.
- LO calculations for $2 \rightarrow n(n=2, \ldots, 8)$ processes.

Higher orders in perturbation theory

Higher order contribution to the two-jet cross-section $\sigma \sim|\mathcal{A}|^{2}$:
Virtual corrections:

Real emission:

$$
(\ggg))^{*}(\underset{y}{\infty}
$$

Modeling of jets:

In a perturbative calculation jets are modeled by only a few partons. This improves with the order to which the calculation is done.

At leading order:

At next-to-leading order:

At next-to-next-to-leading order:

Calculation of observables

Perturbative expansion of the amplitude (LO, NLO, NNLO):

$$
\begin{aligned}
& \left|\mathcal{A}_{n}\right|^{2}=\underbrace{\mathcal{A}_{n}^{(0)^{*}} \mathscr{A}_{n}^{(0)}}_{\text {Born }}+\underbrace{\left(\mathscr{A}_{n}^{(0)^{*}} \mathscr{A}_{n}^{(1)}+\mathscr{A}_{n}^{(1)^{*}} \mathscr{A}_{n}^{(0)}\right)}_{\text {virtual }}+\underbrace{\left(\mathscr{A}_{n}^{(0)^{*}} \mathscr{A}_{n}^{(2)}+\mathscr{A}_{n}^{\left.(2)^{*} \mathscr{A}_{n}^{(0)}+\mathscr{A}_{n}^{(1)^{*}} \mathscr{A}_{n}^{(1)}\right)}\right.}_{\text {two-loop and loop-loop }} \begin{array}{l}
\left|\mathcal{A}_{n+1}\right|^{2}=\underbrace{\mathcal{A}_{n+1}^{(0)}{ }^{*} \mathcal{A}_{n+1}^{(0)}}_{\text {real }}+\underbrace{\left(\mathscr{A}_{n+1}^{\left.(0)^{*} \mathscr{A}_{n+1}^{(1)}+\mathscr{A}_{n+1}^{(1)} \mathscr{A}_{n+1}^{(0)}\right)}\right.}_{\text {loop+unresolved }}, \\
\left|\mathcal{A}_{n+2}\right|^{2}=\underbrace{\mathcal{A}_{n+2}^{(0)}{ }^{*} \mathcal{A}_{n+2}^{(0)}}_{\text {double unresolved }}
\end{array} .
\end{aligned}
$$

$\mathscr{A}_{n}^{(l)}$: amplitude with n external particles and l loops.

Challenges

What are the bottle-necks?

- Length: Perturbative calculations lead to expressions with a huge number of terms.
- Integrals: At one-loop and beyond, the occuring integrals cannot be simply looked up in an integral table.
- Divergences: At NLO and beyond, infrared divergences occur in intermediate stages, if massless particles are involved.
- Numerics: Stable and efficient numerical methods are required for the Monte Carlo integration.

Computer algebra

Computer-intensive symbolic calculations in particle physics can be characterized by:

- Need for basic operations like addition, multiplication, sorting ...
- Specialized code usually written by the user
- No need for a system which knows "more" than the user!

CAS on the market:

- Commercial: Mathematica, Maple, Reduce, ...
- Non-commercial: FORM, GiNaC, ...

Vermaseren; Bauer, Frink, Kreckel, Vollinga, ...

The amplitudes for $e^{+} e^{-} \rightarrow 3$ jets at NNLO

A NNLO calculation of $e^{+} e^{-} \rightarrow 3$ jets requires the following amplitudes:

- Born amplitudes for $e^{+} e^{-} \rightarrow 5$ jets:
F. Berends, W. Giele and H. Kuijf, 1989;
K. Hagiwara and D. Zeppenfeld, 1989.
- One-loop amplitudes for $e^{+} e^{-} \rightarrow 4$ jets:
Z. Bern, L. Dixon, D.A. Kosower and S.W., 1996;
J. Campbell, N. Glover and D. Miller, 1996.
- Two-loop amplitudes for $e^{+} e^{-} \rightarrow 3$ jets:
L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi, 2002;
S. Moch, P. Uwer and S.W., 2002.

The calculation of two-loop integrals

- Techniques to calculate two-loop integrals
- Mellin-Barnes transformation, Smirnov'99, Tausk'99.
- Differential equations, Gehrmann, Remiddi ' 00 .
- Nested sums, Moch, Uwer, S.w. '01.
- Sector decomposition (numerical), Binoth, Heinrich, '00.
- Methods to reduce the work-load:
- Integration-by-parts, Chetyrkin, Kataev, Tkachov '81.
- Reduction algorithms, Tarasov '96, Laporta '01.
- Cut technique Bern, Dixon, Kosower, '00

The double-box integral

Two-loop amplitudes for $2 \rightarrow 2$ processes involve the double-box integral:

- First calculated by Smirnov (planar) and Tausk (non-planar) in 1999.
- Calculation based on Mellin-Barnes representation.
- Result expressed in harmonic polylogarithms.

$$
H_{m_{1}, \ldots, m_{k}}(x)=\sum_{i_{1}>i_{2}>\ldots>i_{k}>0} \frac{x_{1}^{i_{1}}}{i_{1}^{m_{1}} i_{2}^{m_{2}} \ldots i_{k}^{m_{k}}}, \quad x=\frac{s}{t} .
$$

Multiple polylogarithms

- Definition:

$$
\mathrm{Li}_{m_{1}, \ldots, m_{k}}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i_{1}>i_{2}>\ldots>i_{k}>0} \frac{x_{1}^{i_{1}}}{i_{1}^{m_{1}}} \frac{x_{2}^{i_{2}}}{i_{2}^{m_{2}}} \cdots \frac{x_{k}^{i_{k}}}{i_{k}^{m_{k}}} .
$$

(Goncharov; Borwein, Bradley, Broadhurst and Lisonek)

- Special subsets: Harmonic polylogs, Nielsen polylogs, classical polylogs (Remiddi and Vermaseren, Gehrmann and Remiddi).
- Have also an integral representation.
- Obey two Hopf algebras (Moch, Uwer, S.W.).
- Can be evaluated numerically for all complex values of the arguments (Gehrmann and Remiddi, Vollinga and S.W.).

Infrared divergences and the Kinoshita-Lee-Nauenberg theorem

In addition to ultraviolet divergences, loop integrals can have infrared divergences.
For each IR divergence there is a corresponding divergence with the opposite sign in the real emission amplitude, when particles becomes soft or collinear (e.g. unresolved).

The Kinoshita-Lee-Nauenberg theorem: Any observable, summed over all states degenerate according to some resolution criteria, will be finite.

The subtraction method

The NLO cross section is rewritten as

$$
\sigma^{N L O}=\int_{n+1} d \sigma^{R}+\int_{n} d \sigma^{V}=\int_{n+1}\left(d \sigma^{R}-d \sigma^{A}\right)+\int_{n}\left(d \sigma^{V}+\int_{1} d \sigma^{A}\right)
$$

The approximation $d \sigma^{A}$ has to fulfill the following requirements:

- $d \sigma^{A}$ must be a proper approximation of $d \sigma^{R}$ such as to have the same pointwise singular behaviour as $d \sigma^{R}$ itself.
Thus, $d \sigma^{A}$ acts as a local counterterm for $d \sigma^{R}$.
- Analytic integrability over the one-parton subspace leading to soft and collinear divergences.

An example involving double unresolved configurations

The leading-colour contributions to $e^{+} e^{-} \rightarrow q g g \bar{q}$.
Double unresolved configurations:

- Two pairs of separately collinear particles
- Three particles collinear
- Two particles collinear and a third soft particle
- Two soft particles
- Coplanar degeneracy

Single unresolved configurations:

- Two collinear particles
- One soft particle

The subtraction method at NNLO

- Singular behaviour
- Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell, Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower '99
- Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore, Schmidt, Kosower, Uwer, Catani, Grazzini, '99
- Extension of the subtraction method to NNLO Kosower; s.W.; Kilgore; Gehrmann-De Ridder, Gehrmann, Glover, Heinrich; Frixione, Grazzini; Somogyi, Trócsányi and Del Duca;
- Cancellation based on sector decomposition Anastasiou, Melnikov, Petriello; Heinrich;
- Applications:
- $p p \rightarrow W$, Anastasiou, Dixon, Melnikov, Petriello '03,
- $p p \rightarrow H$, Anastasiou, Dixon, Melnikov, Petriello ’05, Catani, Grazzini '08
$-e^{+} e^{-} \longrightarrow 2$ jets, Anastasiou, Melnikov, Petriello '04, S.W. '06
$-e^{+} e^{-} \longrightarrow 3$ jets, Gehrmann-De Ridder, Gehrmann, Glover, Heinrich '07, S.W. '08

Antenna subtraction terms at NNLO

one-loop unresolved

Gehrmann-De Ridder, Gehrmann, Glover, '05

At NNLO also iterated structures:

colour connected

almost colour connected

$e^{+} e^{-} \rightarrow 3$ jets at NNLO

Fully differential Monte-Carlo programs for 3-jet observables at NNLO:

- EERAD3

Gehrmann-De Ridder, Gehrmann, Glover, Heinrich,
Phys.Rev.Lett.99:132002,2007,
Phys.Rev.Lett.100:172001,2008

- MERCUTIO2
S.W.,

Phys.Rev.Lett.101:162001,2008

Soft gluons

4 partons:

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \ln \left(\frac{\left(1+c_{j}\right)\left(1-c_{2}\right)}{2\left(1-c_{2} c_{j}-s_{2} s_{j} \cos \phi\right)}\right)= \\
& =\ln \left(\frac{1-c_{2} c_{j}+\left(c_{j}-c_{2}\right)}{1-c_{2} c_{j}+\left|c_{j}-c_{2}\right|}\right)
\end{aligned}
$$

Non-zero for $c_{j}<c_{2}$!
The explicit poles in the fourparton configuration have to cancel: $d \alpha^{\text {soft }}$ is needed.

The five-parton contribution has to be independent of the slicing parameter: $-d \alpha^{\text {soft }}$ is needed.

5 partons:

Comparison with EERAD3

Thrust

Results for the three-jet rate in electron-positron annihilation

Results for the thrust distribution

Further refinements

Soft-gluon resummation: Perturbative expansion is of the form

$$
1+c_{0} \alpha_{s}+c_{1} \alpha_{s} \ln y_{c u t}+c_{2} \alpha_{s} \ln ^{2} y_{c u t}+O\left(\alpha^{2}\right)
$$

In the region where $\alpha_{s} \ln ^{2} y_{\text {cut }} \approx 1$ resum the large logarithms.
Catani, Trentadue, Turnock, Webber, '93; Becher, Schwartz, '08
Power corrections: From the operator product expansion we expect power corrections of the form

$$
\frac{\lambda}{Q}+O\left(\frac{1}{Q^{2}}\right)
$$

Dokshitzer, Webber, '97; Davison, Webber, '08
Current world average:

$$
\alpha_{s}\left(m_{Z}\right)=0.1176(20)
$$

Results for the thrust distribution

Changing the centre-of-mass energy:

Summary

- α_{s} is one of the fundamental parameters of nature
- Error on α_{s} dominated by theory
- NNLO calculations reduce the theoretical uncertainty

Re-analysis of JADE data, ...

- Calculational techniques developed for $e^{+} e^{-} \rightarrow 3$ jets can be applied to other processes

