CERN Accelerator Projects and Future

Plans

Frank Zimmermann DESY, Hamburg, 30 June 2009

Thanks to: Markus Aicheler, Ralph Assmann, Bernhard Auchmann, Elena Benedetto, Oliver Bruning, Hans Braun, Rama Calaga, Allen Caldwell, Bernd Dehning, Roland Garoby, Frank Gerigk, Massimo Giovannozzi, Alex Herlert, Jena-Rierre Kontchottk, Yannis Papaphilippon, Gersinde Prior, Robert Rossmanith, Walter Scandale, Rüdiger Schmidt, Ralph Steinhagen, Elena

Wildner, Guoxing

Contraction of the state of the

CERN

- CERN was founded in 1954
- as one of Europe's first joint ventures
- it sits astride Franco-Swiss border near Geneva
- currently 20 European member states (Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland and United Kingdom)
- observer states & organizations (the European Commission, India, Israel, Japan, Russian Federation, Turkey, UNESCO and USA)
- with the participation of the United States, Canada, Japan, Russia, India and others, CERN's main accelerator, the LHC, is the first global project in particle physics

The Twenty Member States of CERN

Member States (Dates of Accession)

CERN flagship accelerators

- PS Proton Synchrotron (1959-) *first strong-focusing proton ring !* ISR Intersecting Storage Rings (1971- *first hadron collider!* 1985)
- first proton-antiproton collider! SPS - Super Proton Synchrotron (1976-)
- LEP Large Electron-Positron storage ring (1989-2001) highest energy e+e- collider!
- LHC Large Hadron Collider (2008-)
- hest enerav • SLHC - Super LHC (~2018-) proton/ion collider!

 CLIC - Compact Linear Collider (~2023?-) colour code: stopped, in operation, planned

Accelerator chain of CERN (operating or approved projects)

... and there are some German physicists at CERN

SX1

CERN users without fellows and associates

Source: DG White Paper. 2006

CERN personnel strength history

Source: DG White Paper. 2006

LHC

Large Hadron Collider (LHC)

LHC baseline was pushed in competition with SSC (†1993)

beam commissioning started 10 September

LHC first beam 10 September 2008

first beam induced quench at injection with < 4 10⁹ protons (~10⁻⁵ of design intensity)

B. Jeanneret et al, LHC Project Report 44 (1996)
"The intensity of the bunch shall therefore not be much larger than 3 10^9 protons."

at 7 TeV, ~2000 times more sensitive!

A. Butterworth, RF Group

longitudinal mountain range recorded ~5 minutes after rf capture

beam lifetime ~infinite

(too good to be measured; many hours)

J. Wenninger

tunes 64 and 59 as design (vertical FFT has second peak!?)

very first look at β beating with turn-by-turn BPMs

0.4 data 0.2 $\Delta \beta_{\chi}/\beta_{\chi}$ over 90 0 turns -0.2 taken -0.4 during 5 15 20 10 1.5 Meas. (SVD) vertical Tolerance orbit 0.5 Δβ_V/β 0 correc--0.5 tion -1 5 10 15 20 0 Longitudinal location [km]

post-analysis of β beating identified a cable swap between two matching quadrupoles for the two beams

25

25

R. Tomas, M. Aiba

R. Tomas, M. Aiba

measurement and model prediction with quadrupole errors fitted only in the straight sections

most prominent LHC visitor?

Mr. Bill Gates

8 June 2009

Prof. Rolf Heuer CERN DG

ALLER BREEDE LEVEL

LHC challenges

- extremely high stored beam energy
 - machine protection
 - collimation
 - radiation damage, magnet quenches & "single-event upsets"
- many bunches (~3000 / beam)
 - electron-cloud effects
 - "parasitic collisions," long-range beam-beam interaction, crossing angle

nominal LHC: total stored energy=11 GJ

at 30 knots

K.H. Mess, Chamonix 01

at <1% of nominal intensity LHC enters new territory

T. Wijnands, M. Brugger

High-Energy Hadron Fluences

e.g., some estimated LHC-levels for hadrons (E > 20 MeV) per cm² per nominal year

electron cloud in the LHC

schematic of e- cloud build up in the arc beam pipe, due to photoemission and secondary emission [F. Ruggiero]

 \rightarrow heat load, beam instabilities, poor beam lifetime

LHC interaction-region layout

nominal bunch spacing= 7.5 m nominal collision spacing = 3.75 m → about 2x15 collisions between IP and separation dipole! tune shift would increase 30 times! solution: crossing angle

long-range beam-beam

LHC beam-beam tune footprint

LHC design criterion: nominal total tune spread (up to 6σ in x&y) from all IPs and over all bunches, including long-range effects, should be less than 0.01 (experience at SPS collider)

 $L=10^{34} \text{ cm}^{-2}\text{s}^{-1}$

crossing angle $R_{\phi} = \frac{1}{\sqrt{1+\phi^2}}; \quad \phi \equiv \frac{\theta_c \sigma_z}{2\sigma_r}$ "Piwinski angle"

SLHC

LHC with 10x higher luminosity = 10^{35} cm⁻²s⁻¹

some SLHC issues

- event pile up (#events / bunch crossing)
- reducing β^* , new final-focus quadrupoles
- off-momentum optics
- higher beam current
- collimation upgrade
- magnet lifetime & shielding
- low luminosity lifetime ~ 2-5 hours

event pile up in detector

p_t > 1 GeV/c cut, i.e. all soft tracks removed

beam current $L = \left(\frac{\gamma f_{rev}}{4\pi}\right) \frac{n_b N_b}{\beta^*} \left(\frac{N_b}{\varepsilon}\right)$ luminosity geometric factor brightness IP beta function $\sigma^* = \sqrt{\beta^* \frac{\varepsilon_N}{\gamma}} \quad \text{rms IP}$ beam size $R_{\phi} = \frac{1}{\sqrt{1 + \phi^2}}; \quad \phi \equiv \frac{\theta_c \sigma_z}{2\sigma_x}$ $d^* = \sqrt{\frac{1}{\beta^*} \frac{\varepsilon_N}{\nu}}$ rms IP normalized to nominal divergence minimum $\theta_c \approx a d^* \left(0.7 + 0.3 b \sqrt{\tilde{n}_b \tilde{N}_b / \tilde{\varepsilon}_N} \right)$ crossing angle for long-range b-b total beam-beam tune geometric shift for 2 IPs factor shift for z is a wide x&y crossing $\Delta Q_{bb} \approx \frac{r_p}{2\pi}$ b-b tune shift also $<\Delta \hat{Q}_{bk}$ decreases with crossing angle

brightness

for Gaussian bunch shape

SLHC phase I – IR upgrade

- new Nb-Ti quadrupole triplets with larger aperture, new separation dipoles, etc
- may allow reaching $\beta^* \sim 0.30$ m in IP1 and 5
- should be completed by 2014

SLHC phase II – IR upgrade

- Nb₃Sn triplet with larger aperture providing
 β*~0.10-0.15 m
- complementary measures: long-range beambeam compensation, crab cavities, etc
- realized around 2018

both phases accompanied by extensive injector upgrades

reducing β^* - 1

higher-order chromatic effects affect momentum collimation, by destroying hierarchy of primary, secondary, and tertiary etc. collimators

S. Fartoukh
effect of off-momentum $\boldsymbol{\beta}$ beating on collimation

reducing β^* - 3

if off-momentum beta beating can be corrected or the collimation be made more robust:

- β* ~ 30 cm for l* = +/- 23 m
 with NbTi magnet technology
 limited by aperture

ultimate β* ~ 15 cm for /* = +/- 23 m
ultimate β* ~ 11 cm for /* = +/- 13 m

with Nb₃Sn magnet technology (higher field, more margin), limited by linear chromaticity correction

at the b-b limit, larger Piwinski angle &/or larger emittance increase luminosity!

SLHC collision schemes

address drop in geometric overlap for smaller β^*

long-range beam-beam compensation increase R_d

- robust in simulations, effective in SPS beam experiments
- allows for reduced crossing angle

• "Early Separation" (ES) scheme further increase R_{ϕ}

- aims at decoupling IP crossing angle from beam-beam separation in common sections by installing dipoles inside the detectors; weak crab cavities further boost luminosity
- dynamical control of crossing angle \rightarrow simple leveling

Full Crab Crossing

- maximum R_{ϕ} - similar effect as ES, no magnets inside detector
- under test at KEKB

"Large Piwinski Angle" (LPA) scheme

- exploits concomitant drop in beam-beam tune shift to increase the bunch charge

prototype long-range beam-beam compensator in the SPS

layout of Early Separation scheme

schematic of crab crossing

- RF crab cavity deflects head and tail in opposite direction so that collision is effectively "head on" for luminosity and tune shift
- bunch centroids still cross at an angle (easy separation)
- 1st proposed in 1988, in operation at KEKB since 2007

"compact" Crab Cavity candidates for LHC phase II

FNAL Mushroom Cavity

0 degrees

schematic of "LPA" collisions

- 1) large Piwinski angle $\theta_c \sigma_z >> 2 \sigma_x^*$
- 2) longitudinally flat profile
- \rightarrow reduced tune shift, higher bunch charge

LHC forecast peak & integrated luminosity evolution

M. Nessi, R. Garoby

SLHC "phase-2" IR layouts

J.-P. Koutchouk

early-separation dipoles in side detectors, crab cavities \rightarrow hardware inside ATLAS & CMS detectors,

crab cavities with 60% higher voltage \rightarrow first hadron crab cavities, off- δ β -beat

R. Garoby

low emittance (LE)

full crab crossing (FCC) L. Evans, w. Scandale, w. Scandale, w. Scandale, regnets_{F. Zimmermann}

first hadron crab cavities; off- $\delta \beta$

large Piwinski angle (LPA) larger-aperture triplet

nagnets

early separation (ES) J.-P. Koutch stronger triplet megnets

F. Ruggiero, W. Scandale. F. Zimmermann

> long-range beam-beam wire compensation \rightarrow novel operating regime for hadron colliders, beam generation

smaller transverse emittance \rightarrow constraint on new injectors, off- δ β -beat

stronger triplet magnets

parameter	symbol	nominal	ultimate	ph. I	ES	FCC	LE	LPA
transverse emittance	ε [μm]	3.75	3.75		3.75	3.75	1.0	3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7		1.7	1.7	1.7	4.9
bunch spacing	Δt [ns]	25	25		25	25	25	50
beam current	I [A]	0.58	0.86		0.86	0.86	0.86	1.22
longitudinal profile		Gauss	Gauss		Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55		7.55	7.55	7.55	11.8
beta* at IP1&5	β* [m]	0.55	0.5	0.3	0.08	0.08	0.1	0.25
full crossing angle	θ _c [µrad]	285	315	410	0	0	311	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	1.26	0	0	3.2	2.0
geometric reduction		0.84	0.80	0.62	0.77	0.77	0.30	0.48
peak luminosity	$L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	1	2.3	3.0	14.0	14.0	16.3	11.9
peak events per #ing		19	44	57	266	266	310	452
initial lumi lifetime	$\tau_{L}[h]$	22	14	11	2.2	2.2	2.0	4.0
effective luminosity (T _{turnaround} =10 h)	$L_{eff}[10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}]$	0.46	0.91	1.07	2.3	2.3	2.5	2.7
	T _{run,opt} [h]	21.2	17.0	14.9	6.9	6.9	6.4	9.0
effective luminosity (T _{turnaround} =5 h)	$L_{eff}[10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}]$	0.56	1.15	1.38	3.4	3.4	3.7	3.7
	T _{run,opt} [h]	15.0	12.0	10.5	4.9	4.9	4.5	6.3
e-c heat SEY=1.4(1.3)	P [W/m]	1.1 (0.4)	1.0 (0.6)		1.0 (0.6)	1.0 (0.6)	1.0 (0.6)	0.4 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25		0.25	0.25	0.25	0.36
image current heat	$P_{IC} [W/m]$	0.15	0.33		0.33	0.33	0.33	0.78
gas-s. 100 h τ_b	P _{gas} [W/m]	0.04	0.06		0.06	0.06	0.06	0.09
extent luminous region	σ_{l} [cm]	4.5	4.3	3.3	5.3	5.3	1.6	4.2
comment		nominal	ultimate		D0+CC	crab		wire com.

"luminosity leveling"

expected very fast decay of luminosity (few hours) $L(t) = \frac{\hat{L}}{(1 + t / \tau_{eff})^2}$ $\tau_{eff} = \frac{N_b n_b}{n_{IP} \hat{L} \sigma_{tot}}$ dominated by proton burn off in collisions

leveling with crossing angle offers distinct advantages:

- increased average luminosity if beam current not limited
- operational simplicity

natural option for early separation or crab cavities may first be tested in LHC heavy-ion collisions

luminosity leveling with crossing angle

experimenters' choice:

no accelerator components inside detector
 lowest possible event pile up
 possibility of easy luminosity leveling

→ Full Crab Crossing upgrade, with Large Piwinski Angle as back up

LHC injector upgrade & highpower *p* beams

CERN complex upgrade strategy

new injectors: *increased reliability* & *superior beam parameters*

synchronized with LHC IR upgrades:

phase I: 2014 phase II: 2018

R. Garoby

layout of new LHC injectors

R. Garoby, CARE-HHH BEAM07, October'07; L. Evans, LHCC, 20 Feb '08

Linac4

RF accelerating structures: 4 types (RFQ, DTL, CCDTL, PIMS) Frequency: 352.2 MHz Duty cycle: 0.1% phase 1 (Linac4), 3-4% phase 2 (SPL), (design: 10%)

Linac4 - Civil engineering status

Construction started in fall 2008

Linac4 tunnel ("cut and cover" excavation) seen from highenergy side.

Final concrete works starting at low-energy side, excavation proceeding at high energy side.

Tunnel level -12 m, length 100 m.

Delivery of tunnel and surface equipment building end of 2010.

Linac4 - Civil engineering status

High-energy side of Linac4 tunnel, with beam dump chamber and connecting tunnel to Linac2 line.

<u>Super Conducting Proton Linac – "SPL"</u> (High Power, 2x4 MW)

SC-linac (160 MeV \rightarrow 5 GeV) with ejection at intermediate energy

ESS – European Spallation Source

SC proton linac; same RF frequency as SPL (704 MHz), 5 MW (or 2x5 MW) beam power

contact: alexander.herlert@cem.ch

- · radioactive ion beam facility
- more than 800 different isotopes of more than 70 different elements
- nuclear physics and solid-state physics research

future projects:

- target development (selectivity and ion beam purity)
- laser application (resonant laser ionization and laser spectroscopy)
- polarized radioactive beams HIE-ISOLDE upgrade for higher energy of post-accelerated ions (e.g. superconducting LINAC)

future enhancement by high-power *p* beam? a - ISOLDE & EURISOL driven by SPL

CERN to Gran Sasso Neutrino Beam

future enhancement by high-power *p* beam? b - <u>neutrino factory with SPL-based *p* driver</u>

PS2

circumference 1346 m

imaginary γ_{tr} -no transition crossing -more complicated lattice than regular FODO

collaboration with LARP & US labs

SPS upgrade : e-cloud mitigation

beam-pipe **surface treatment**:

- in situ
- no re-activation
- no aperture restriction carbon-based composites (amorphous carbon layers, carbon coated black metals)
 SEY < 1, even after weeks of air exposure

80

x [mm], (second)

Π

60

high field magnets for SLHC, SPS+, and D/TLHC

critical field B_{c2} vs T for different superconductors

today, fraction of usable *B*_{c2}: 80% for NbTi 70% for Nb₃Sn 10-15% for HTS & MgB₂

L. Rossi

fast cycling SC magnets for SPS+ (and PS2?) Iron Dominated SC Dipole

SC quadrupole gradient vs aperture - scaling laws and real data

High Field Dipoles

L. Rossi

P. McIntyre

Extend to 24 Tesla: Bi-2212 in inner (high field) windings, Nb₃Sn in outer (low field) windings

Dual dipole (ala LHC) Bore field 24 Tesla Max stress in superconductor 130 MPa Superconductor x-section: Nb₃Sn 26 cm² Bi-2212 47 cm² Cable current 25 kA Beam tube dia. 50 mm Beam separation 194 mm

stress management by block coil geometry

magnets are getting more efficient!

P. McIntyre
LHC energy tripler - TLHC

"LHC luminosity upgrade (SLHC) is the route that will enable the Farthest Energy Frontier (*FEF*)"

L. Rossi

 $Nb_3Sn + HTS$ magnets transmission line magnets of new injecto

L. Rossi, P. McIntyre

LHeC high-energy high-luminosity e±p & e±A collider

physics motivation

distance scales resolved in leptonhadron scattering experiments since 1950s, and some of the new physics revealed energies and luminosities of existing and proposed future lepton-proton scattering facilities *e- energy ~60-140 GeV luminosity ~10³³ cm⁻²s⁻¹*

kinematic plane in Bjorken-x and resolving power Q^2 , showing the coverage of fixed target experiments, HERA and LHeC

particle physicists request both *e*⁻*p* &*e*⁺*p* collisions; lepton polarization is also "very much desired"

Max Klein & Paul Newman, CERN Courier April 2009

tentative SC linac parameters for RL

LHeC-RL scenario	lumi	baseline	energy
final energy [GeV]	60	100	140
cell length [m]	24	24	24
cavity fill factor	0.7	0.7	0.7
tot. linac length [m]	3000	2712	3024
cav. gradient [MV/m]	13	25	32
operation mode	CW (ERL)	pulsed	pulsed

RF frequency: ~700 MHz

4 passes

2 passes

Anders Eide

example linac optics for 4-pass ERL option

Anders Eide

luminosity constraints

LHC 7-TeV *p* beam parameters

	N _{b,p}	T _{sep}	ε _p γ _p	β* _{p,min}
LHC phase-I upgrade	1.7x10 ¹¹	25 ns	3.75 μm	0.25 m
LHC phase-II upgrade ("LPA")	5x10 ¹¹	50 ns	3.75 μm	0.10 m

p and e beams matched at collision point

ring SR power = linac beam power & cryo power = electrical power set to 100 MW linac has much lower current

luminosity vs energy

example parameters

	LHeC-RR	LHeC-RL	LHeC-RL	LHeC-RL	ILC	XFEL
		high lumi	100 GeV	high energy		
e ⁻ energy at IP [GeV]	60	60	100	140	(2×)250	20
luminosity $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$	29	29† (2.9 [‡])	2.2	1.5	200	N/A
bunch population $[10^{10}]$	5.6	0.19† (0.02 [‡])	0.3 (1.5)	0.2 (1.0)	2	0.6
e ⁻ bunch length [μ m]	$\sim 10,000$	300	300	300	300	24
bunch interval [ns]	50	50	50 (250)	50 (250)	369	200
norm. hor.&vert. emittance $[\mu m]$	4000, 2500	50	50	50	10, 0.04	1.4
average current [mA]	135	7† (0.7‡)	0.5	0.5	0.04	0.03
rms IP beam size [μ m]	44, 27	7	7	7	0.64, 0.006	N/A
repetition rate [Hz]	CW	CW	10 [5% d.f.]	10 [5% d.f.]	5	10
bunches/pulse	N/A	N/A	71430	14286	2625	3250
pulse current [mA]	N/A	N/A	10	10	9	25
beam pulse length [ms]	N/A	N/A	5	5	1	0.65
cryo power [MW]	0.5	20	4	6	34	3.6
total wall plug power [MW]	100	100	100	100	230	19

Example LHeC-RR and RL parameters. Numbers for LHeC-RL high-luminosity option marked by `†' assume energy recovery with $\eta_{\text{ER}}=90\%$; those with `‡' refer to $\eta_{\text{ER}}=0\%$.ILC and XFEL numbers are included for comparison. Note that optimization of the RR luminosity for different LHC beam assumptions leads to similar luminosity values of about $10^{33} \text{cm}^{-2} \text{s}^{-1}$

IR layout & crab crossing (for RR)

positrons

ring

a rebuilt conventional e⁺ source would suffice *linac*

true challenge: 10x more e⁺ than ILC! large # bunches \rightarrow damping ring difficult candidate e⁺ sources under study (*POSIPOL* coll.):

- **ERL Compton** source for CW operation e.g. 100 mA ERL w. 10 optical cavities
- undulator source using spent e- beam

- **linac-Compton** source for pulsed operation **complementary options:** collimate to shrink emittance, recycle e+ together with recovering their energy? T. Omori, J. Urakawa,

polarization

linac

e- : from polarized dc gun with ~90% polarization, 10-100 μ m normalized emittance

e+: up to ~60% from undulator or Compton-based source

more LHeC information

LHeC web site www.lhec.org.uk

second ECFA-CERN workshop on the LHeC in September 2009

CLIC

Two beam scheme

Drive beam – 100 A, 240 ns from 2.4 GeV to 240 MeV

without drive beam CLIC would need 32000 Klystrons for E_{CMS} =3 TeV

CLIC parameters

Center-of-mass energy	ILC 500 GeV	CLIC 500 GeV	CLIC 3 TeV
Total (Peak 1%) luminosity [·10 ³⁴]	2(1.5)	2.3 (1.4)	5.9 (2.0)
Repetition rate (Hz)	5		50
Loaded accel. gradient MV/m	32	80	100
Main linac RF frequency GHz	1.3		12
Bunch charge [·10 ⁹]	20	6.8	3.7
Bunch separation (ns)	370		0.5
Beam pulse duration (ns)	950μs	177	156
Beam power/beam (MWatts)		4.9	14
Hor./vert. IP beam size (nm)	600 / 6	200 / 2.3	40 / 1.0
Hadronic events/crossing at IP	0.12	0.2	2.7
Incoherent pairs at IP	1 ·10⁵	1.7·10 ⁵	3·10⁵
BDS length (km)		1.87	2.75
Total site length km	31	13	48
Total power consumption MW	230	130	415

Crossing Angle 20 mrad (ILC 14 mrad)

Lucie Linssen

Jean-Pierre Delahaye, Lucie Linssen, Frank Tecker

Power Extraction Structures (PETS)

Jean-Pierre Delahaye, Lucie Linssen, Frank Tecker

CLIC detector + physics R&D

Two decades of investment in **CLIC accelerator technology now** complemented by in-depth assessment of **detector aspects** and **physics potential**.

Common accelerator/ detector-physics CLIC CDR, end 2010 TDR foreseen for 2015

Lucie Linssen, POSIPOL June 2009

integrated part of ILC-CLIC collaboration

MedAustron one of many examples for technology transfer

CERN technology transfer – *Med*Austron accelerator design

ebg MedAustron

Strahlparameter

Protonen(¹H⁺): Strahlintensität 1 x 10¹⁰ Prot. pro Puls Strahlenergie 60-800 MeV Extraktionsdauer 0.1–1 s

Kohlenstoffionen (${}^{12}C^{6+}$): Strahlintensität $\leq 4x10^8$ Ionen pro Puls Strahlenergie 120-400 MeV/u Extraktionsdauer 0.1–1 s

p driven e[±] plasma acceleration

advanced concept: TeV protons as plasma driver to accelerate electrons to TeV-scale energy A.Caldwell, K. Lotov, A. Pukhov, F.Simon; MPI-P München, U. Düsseldorf, & Novosibirsk

Snapshots of the combined longitudinal phase space of the driver and the witness beam (energy vs coordinate), frames (a)-(d) and corresponding energy spectra, frames (e)-(h). The snapshots are taken at acceleration distances Z = 0, 150, 300, 450 m. The electrons are shown as blue points, while the protons are depicted as red points. arXiv:0807.4599v1, July '08

600 GeV in 450 m!

K. Lotov e*t al*

e-bunch

upgraded accelerator chain (LHC beam)

	SPL	PS2	SPS	LHC
final momentum [GeV/c]	5	50	450	7000
protons/bunch [10 ¹¹]	2.5x10 ⁻⁴	4	4	4
rms longitudinal emittance [eVs]	7.3x10 ⁻⁷	0.05	0.06	0.2 (0.08*)
rms bunch length [ns]	1.9x10 ⁻⁴	1	<0.5	0.25 (0.16*)
relative rms energy spread [10 ⁻³]	0.18	1	0.3	0.11 (0.07*)
rms transverse emittance [µm]	0.35	3.0	3.5	3.75
bunch spacing [ns]	2.8	25	25	25
# bunches / cycle	200,000	144	288	2808
cycle time	20 ms	2.4 s	~13 s	5-10 h?

1 ns = 30 cm, $3x10^{-4}$ ns = 100 μ m

* w/o longitudinal blow up in the LHC

to get "high-energy" proton bunch lengths below 1 mm (e.g. for demonstration): we can use the **beam from the SPL**, or we need strong **cooling**, or **bunch** compression, or an x(y)-z 4/6-D emittance exchange transformation or a combination thereof

schematic of bunch after applying nano-chopper or with high-frequency microwave instability

summary & outlook

- ✓ decreasing resources & large LHC needs
- ✓ R&D for future accelerators driven
 - by collaborations, by postdocs & students
- ✓ SLHC & new injectors will come
- ✓ period of decisions: 2010-2013
 - LHC results
 - CTF3, other LC test results, LC designs
 - Neutrino-Factory design study
 - high-field magnet R&D
- next project(s) after LHC?
 - ✤ LHeC, CLIC, ILC, EURISOL, v factory,
 - β beam facility, super-beams,
 - LHC energy upgrade, etc etc?

THANK YOU FOR YOUR ATTENTION!