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Introduction

Picture: ATLAS simulation

The LHC is almost running and we will have to deal with the data soon.
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Introduction

H

1. Incoming hadron                   (gray bubbles)

➮ Parton distribution function

2. Hard part of the process    (yellow bubble)
➮ Matrix element calculation, cross 
sections at LO, NLO, NNLO level

3. Radiations                                (red graphs)
➮ Parton shower calculation
➮ Matching to the hard part

4. Underlying event                        (blue graphs)
➮ Models based on multiple 
interaction

5. Hardonization                     (green bubbles)
➮ Universal models 

The structure of the Monte Carlo event generators



Introduction

New Physics = Data (experimental) - Background (theory)

Master equation for LHC discovery: 

Experiment

- Collecting raw data
- Detector corrections
- Converting to hadron level
- Converting to parton level

Theory

- Calculate at least at NLO 
level (if it is available)

- Resum the large 
logarithms and match it to 
NLO (if it is available) 

MC event 
generators

Data (no new physics) = [Hard part ⊗ Shower + MPI ⊗ Shower] ⊗ Hadronization

Master equation of the Monte Carlo program:

Well defined Needs some work Only model



Iterative Algorithm
The parton shower evolution starts from the simplest hard configuration, that is usually 
2→2 like.

“Nothing happens”

“Something  happens”

U(tf , t2)
∣∣M2

)
= N (tf , t2)

∣∣M2

)
︸ ︷︷ ︸

+

︷ ︸︸ ︷∫ tf

t2

dt3 U(tf , t3)H(t3)N (t3, t2)
∣∣M2

)

Resolution scale: 400 GeV
Decreasing the resolution scale, 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

This intuitive picture is usually 
called Wilsonian renormalisation 
technique in theoretical physics.
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Statistical space
In QCD a m-patron system is described by the density operator

ρ({p, f}m) =
∣∣M({p, f}m)

〉〈
M({p, f}m)

∣∣

=
∑

s,c,s′,c′

∣∣{s′, c′}m

〉(
{p, f, s′, c′, s, c}m

∣∣ρ
)〈
{s, c}m

∣∣

∣∣ρ
)

=
∑

m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

] ∣∣{p, f, s′, c′, s, c}m

) (
{p, f, s′, c′, s, c}m

∣∣ρ
)

In the statistical space it 
is represented by a vector

∣∣F
)

=
∑

m

1
m!

∫ [
d{p, f, s′, c′, s, c}m

] ∣∣{p, f, s′, c′, s, c}m

)
F ({p, f}m)

Measurement operators can be also represented by vectors in the statistical space

∣∣1
)
⇔ F ({p, f}m) = 1E.g.: Total cross section

∣∣p⊥
)
⇔ F ({p, f}m) = δ(p⊥ − p⊥,Z)

Transverse momentum 
in Drell-Yan:



QCD vs. MC
SHOWER CROSS SECTION

- It is an all order but approximated 
calculation

- Based on soft and collinear 
factorization of the amplitudes

- Usually more approximation 
considered (e.g: large Nc,...)

- Implemented in general purpose 
MC programs (HERWIG, PHYTIA,...)

- Sums up large logarithms

σS [F ] =
(
F

∣∣ρ
)

QCD CROSS SECTION

σQCD[F ]

- It is an all order but approximated 
calculation

- Based on soft and collinear 
factorization of the amplitudes

- Precise in color

- Case-by-case rather elaborate 
calculation 

- Sums up large logarithms, correctly

Let us compare them!



QCD vs. MC
SHOWER CROSS SECTION

- It is an all order but approximated 
calculation

- Based on soft and collinear 
factorization of the amplitudes

- Usually more approximation 
considered (e.g: large Nc,...)

- Implemented in general purpose 
MC programs (HERWIG, PHYTIA,...)

- Sums up large logarithms

σS [F ] =
(
F

∣∣ρ
)

QCD CROSS SECTION

σQCD[F ]

- It is an all order but approximated 
calculation

- Based on soft and collinear 
factorization of the amplitudes

- Precise in color

- Case-by-case rather elaborate 
calculation 

- Sums up large logarithms, correctly

Let us compare them!

Herwig has been tested for

‣ e+e-: thrust, C-parameter, Durham jet rates, 
jet mass distribution, ...

‣ DIS, DY: large x



QCD vs. Parton Shower
Recent paper by Marchesini  and Dokshitzer indicates that the color dipole based showers are 
not consistent with the parton evolution picture. They studied the quark energy distribution.
This has been checked both analytically and  numerically and the shower is consistent with the DGALP 
equation.

Stefan Weinzierl presented numerical results 

d

dt
Dq(t, t′, x) =

∫ 1

x

dz

z
Pqq(z)Dq(t, t′, x/z) +O(e−t)

No approximation and assumptions. 
Only algebraic manipulations.

From shower equation 

to DGLAP

d

dt

(
x, q

∣∣U(t, t′)
∣∣M2

)
=

(
x, q

∣∣[HI(t)− V(t)]U(t, t′)
∣∣M2

)



Drell-Yan pT distribution
Building a shower based on the Catani-Seymour splitting functions and mappings can 
lead to the loss of accuracy. 

This is effectively an approximated NLO calculation with summation of the virtual 
emissions. No resummation of the large logarithms correctly. We got wrong equation 
because of the choice of the momentum mapping. 

Simon Plaetzer reported  modified version where this kinematical issue is fixed.

The correct equation is 

We have to study analytically and test against known QCD results.

(
p⊥

∣∣U(t, 0)
∣∣M2

)
=

(
p⊥

∣∣N (t, 0)
∣∣M2

)
+

∫ t

0
dτ

(
p⊥

∣∣H(τ)N (τ, 0)
∣∣M2

)

(
p⊥

∣∣U(t, 0)
∣∣M2

)
=

(
p⊥

∣∣N (t, 0)
∣∣M2

)
+

∫ t

0
dτ

(
p⊥

∣∣U(t, τ)H(τ)N (τ, 0)
∣∣M2

)



QCD: Drell-Yan process
The NLL expression of the pT distribution was obtained using the renormalization group 
technique and the result at NLL level is  

where

C = 2e−γExA =

√
M2

s
eY xB =

√
M2

s
e−Y

Anna Kulesza had a nice overview on the current progress 
on the summation of  large logarithms  in the processes 

with color singlet in the final state

Let’s try to calculate this formulae from the shower equation!

dσ

dp⊥ dY
=

∫
db

(2π)2
eip⊥·b exp

{
−CF

∫ M2

C2/b2

dk2

k2

αs(k2)
π

[
log

M2

k2
− 3

2

]}

×
∑

a,b

H(0)
a,b fa/A

(
xA,

C2

b2

)
fb/B

(
xA,

C2

b2

)



MC: Drell-Yan process
The result and the derivation strongly depends on the shower algorithm, so it is useful to 
stick at one. My choice an shower algorithm with quantum interference.

Z.N, D.E. Soper: JHEP 0709:114,2007; JHEP 0803:030,2008; JHEP 0807:025,2008

Now, the shower equation is
d

dt

(
p̂, Y

∣∣ρ(t)
)

=
(
p̂, Y

∣∣HI(t)− V(t)
∣∣ρ(t)

)

After some harmless approximations, algebraic manipulations and about 2 months of hard 
work the result is  

dσ

dp⊥ dY
=

∫
db

(2π)2
eip⊥·b exp

{
−CF

∫ M2

C2/b2

dk2

k2

As(k2)
π

[
log

M2

k2
− 3

2

]}

×
∑

a,b

H(0)
a,b fa/A

(
xA,

C2

b2

)
fb/B

(
xA,

C2

b2

)

With the support of the DGLAP equation for the PDFs:

µ2
F

d

dµ2
F

fa/A

(
x, µ2

F

)
= −

∑

â

∫ 1

0

dz

z

αs(µ2
R)

2π
Pâ,a(z) fâ/A

(
x/z, µ2

F

)



MC: Drell-Yan process
The result is strongly depends on the choice of the argument of the αs in the shower:

Using transverse momentum then we have, A(1) = 1

As(k2)
π

=
αs(M2)

π

(
1−A(1) β0

αs(M2)
2π

log
M2

k2

)

As(k2)
π

=
αs(k2)

π
NLL result in the exponent

We need a modified LO PDF

µ2
F

d

dµ2
F

fa/A

(
x, µ2

F

)
=

∑

â

∫ 1

0

dz

z

αs((1− z)µ2
F)

2π
Pâ,a(z) fâ/A

(
x/z, µ2

F

)



Modified LO PDF
µ2

F
d

dµ2
F

fa/A

(
x, µ2

F

)
=

∑

â

∫ 1

0

dz

z

αs(µ2
F)

2π
Pâ,a(z) fâ/A

(
x/z, µ2

F

)

−
∑

â

∫ 1

0

dz

z

[
αs(µ2

F)
2π

]2

β0 log(1− z)Pâ,a(z) fâ/A

(
x/z, µ2

F

)

Expanding the strong coupling, we have

• Adds some NLO correction to the standard LO PDFs.
• The LO part is the standard evolution. The NLO piece violate the momentum sum 

rule dynamically.
• This violation is less important at large scale.
• This is not a universal PDF, other shower models might prefer other solution.

• With this choice of the PDFs and renormalization scale we can sum up all the LL 
and NLL contributions only for the pT Drell-Yan distribution there is no guarantee 
that this works for other observable.

• In principle shower has chance to sum up all the LL and the LO NLL contributions.
• Shower is only an exponentiated LO (let’s call it eLO) calculation. 

“has chance to”  ≠  “does” 



Non-global Observables

Y separation

Production of two jets:
- with transverse momentum Q
- with rapidity separation Y
- emissions with kT > Q0 Higgs +2 jets!

•!Different QCD radiation in the inter-jet region!

•!To enhance the WBF channel, one can make a veto Q0 

on additional radiation between the tagged jets!

•!QCD radiation as in dijet production!

•!Important in order to extract the VVH coupling!

Weak boson fusion! Gluon fusion!

Forshaw and Sjödahl 
arXiv:0705.1504 [hep-ph] 

Motivation:

- Possible Higgs discovery channel
- Important to extract the VVH coupling
- Different QCD radiation in the interjet region

What happens if we dress the hard scattering with soft gluons? 

Simone Marzani  had a overview on the gap between jet probles 



Color Evolution
In the naive approach the real and virtual contributions are cancelled everywhere 
except  in the gap region where kT > Q0. 
One only needs to consider virtual contributions in the gap region

Q0 <   kT < Q

M = e−αs log Q
Q0

ΓMB

anomalous dimension: 
its an operator in the color space

Needs color 
evolution!

✗ All the classical showers (HERWIG, PHYTIA, ARIADNE, CS-dipole) fails to do color 
evolution

✓There is a fully defined shower algorithm that can consider quantum interferences
                                             Z.N, D.E.Soper: JHEP 0709:114,2007; JHEP 0803:030,2008; JHEP 0807:025,2008

✗ You still have to wait for the implementation...



Non-global Effects
Non-global effects!

•! However this approach completely ignores a whole 

tower of  LL !

•! Virtual contributions are not the whole story 

because real emissions out of  the gap are forbidden 

to remit back into the gap!

Dasgupta and Salam 
hep-ph/0104277 

Dasgupta and Salam: 
hep-ph/0104277 

Virtual contributions are not the whole story because real emissions out of the gap are 
forbidden to remit back into the gap

This configurations lead to the so-called Super-Leading Logs (SLL)

Forshaw, Kyrieleis, Seymour 
hep-ph/0604094 σ(1) ∼ −α4

sL
5π2 + · · ·

This logarithms are entirely due to the emission of the Coulomb gluons:

Γ = iπ T1 · T2 + · · ·

Do the “Quantum Shower” or any other shower know about these logarithms?



MC: Non-global Effects
Answer: None of them knows.

∣ ∣ {
p,

f
,.

..
} m

)

∣ ∣ {
p,

f
,.

..
} m

)

i

k

∣ ∣ {
p,

f
,.

..
} m

)

∣ ∣ {
p,

f
,.

..
} m

)

i

k

+

Using the factorization properties of the QCD the approximated order by order 
calculation can be organized according to 

d

dt
U(t, t′) =

[
HI(t)− V(t)

]
U(t, t′)

➡ Real emissions
✓ Based on the soft and 

collinear factorization
✓ True matrix elements 

considered

➡ Virtual emissions
✓ Obtained from the unitary 

condition,
✗ No 1-loop amplitudes 

considered explicitly
✗ Missing genuine 1-loop 

contributions

(
1
∣∣HI(t) =

(
1
∣∣V(t)



Do we need this precision?

Classical probabilistic picture
- positiveness
- unweighted shower

Quasi-classical probabilities
- still can be organized as a 

Markovian process
- real weighted for color (w ≈ 1)
- complex weights for spins

Color & Spin Evolution

Quantum probabilities
- quantum Markovian process ???
- complex weights everywhere
- .....

Non-global effects
σMC [F ] =

(
F

∣∣D(tf )
︸ ︷︷ ︸

∣∣ρ(tf )
)

Hadronization

‣ Hadronization can be considered as a implicit 
measurement of the partonic color flow. The 
quantum effects could be important. 

‣ Interesting physics from non-global observable

‣ Better understanding of QCD dynamics

‣ In QCD “Q” stands for “Quantum” ........



Factorization Theorem

f

H .....

P
xP

(1-x)P

STANDARD COLLINEAR FACTORIZATION

σ =
∫ 1

0
dx f(x, µ2

F ) σ̂(xP ) +O(Λ/Q)

‣ With the collinear approximation 
we are able to write the cross 
section in simple factorized form. 
This factorization can be proofed.

‣ The PDF depends only on the 
momentum fraction variable.

‣ We might loose important kinematical 
effect with the collinear approximation 
in the initial state.

‣ Can we proof factorization if we 
consider the full kinematics correctly?

Collinear 
approximation



q
q

SHL
HR

J

P

F

Fully Unintegrated PCF
Ted Rogers had a overview on fully unintegrated parton correlation functions

Francesco Hautmann talk about unintegrated (kT dependent) PDFs 

The factorization is proofed by Collins and Rogers in Abelian gauge theory. There are 
some indication that it works for QCD. 

✓ There is factorization

✓ Two more non-perturbative 
universal functions.

✗ No evolution equation for 
them, so far.

✗ No model to calculate them

✗ Lots of theory difficulties

‣ One can ask why to bother

σ =
∫

d4kT

(2π)4
d4kJ

(2π)4
d4kS

(2π)4
(2π)4δ(4)(q + P − kT − kJ − kS)

×|H(Q, k̃T , k̃J , µ)|2 S2(kS , ys, µ) F (kT, yp, ys, µ) J(kJ, ys, µ),



Shower Model PCF
.... ....

This parton 
is off-shell

....

This parton 
is more and 
more off-shell

∼1GeV

Non-perturbative 
physics. Collinear 
PDF is fine.

• It seem to me that a “carefully 
defined” parton shower 
generates the fully 
unintegrated PCFs.

• Studying generalized 
factorization can help us to 
improve our MC models. 

S2(q + P − kT − kJ, ys, µ) F (kT, yp, ys, µ) J(kJ, ys, µ) ∼
(
kT , kJ

∣∣U(tf , 0)
∣∣H

)

|H(Q, k̃T , k̃J , µ)|2



Summary

• It is important to test parton shower against resummed 
QCD calculation.

• This can help us to treat it more systematically.

• Modified parton distribution functions.

• Need more work on color evolution, spin correlations, non-
global effect,...., more theory work required.

• Important but I didn’t talk about NLO shower, matching to LO 
and NLO fix order matrix elements.




