Cosmological analysis of the completed BOSS

Ariel G. Sánchez

Román Scoccimarro, Martín Crocce, Jan Grieb, Salvador Salazar, Martha Lippich, Claudio Dalla Vecchia, and the BOSS GC WG

DESY colloquium - Zeuthen - 30.11.2016

Outline

• Cosmology from large-scale structure observations.

• The Baryon Oscillation Spectroscopic Survey (BOSS).

• Anisotropic clustering measurements.

• Cosmological constraints from BOSS-DR12.

• The DR12 BOSS *consensus* cosmological constraints.

Observational cosmology

• A wealth of high precision observations have shown us a more complex Universe than previously thought.

Observational cosmology

- The origin of cosmic acceleration is one of the most important open problems in cosmology.
- A mysterious *dark energy* must dominate the energy budget of the Universe.

 $w_{\rm DE} = \frac{p_{\rm DE}}{\rho_{\rm DE}}$

- The Λ CDM model: vacuum energy, $w_{\rm DE} = -1$.
- Alternatively, cosmic acceleration indicates a failure of GR, which needs to be modified.

Cosmology from LSS observations

• Observational effects of cosmic acceleration:

- Expansion history of the Universe:

$$H(z) = \frac{\dot{a}}{a} \qquad r(z) = \int_0^z \frac{c \, dz'}{H(z')}$$

- Growth of density fluctuations:

$$\delta = \frac{\rho - \bar{\rho}}{\bar{\rho}} \qquad \ddot{\delta} + 2H\dot{\delta} = 4\pi G\bar{\rho}\delta$$

 $dx_{\rm AB} = a(t)dr_{\rm AB}$

• Both effects can be probed by LSS observations

Cosmology from LSS observations

• Statistical analysis of large-scale structure

Cosmology from LSS observations

Statistical analysis of large-scale structure

• The BAO signal is also present in the CMB.

Image: ESA Planck team

• The BAO signal is also present in the CMB.

- First detection of the BAO peak (SDSS-LRG).
- Confirmed by other techniques and samples.
- Confirms a prediction of the standard model.
- BAOs are related to the sound

 $r_{\rm d} = r_{\rm s}(z_{\rm drag})$

• BAO can be used as a standard ruler.

Redshift-space distortions

• The observed redshifts are affected by peculiar velocities.

$$(1 + z_{\rm obs}) = (1 + z_{\rm cos})(1 + v/c)$$

• Velocities depend on the density field itself.

Redshift-space distortions

• The observed redshifts are affected by peculiar velocities.

$$(1 + z_{\rm obs}) = (1 + z_{\rm cos})(1 + v/c)$$

• Velocities depend on the density field itself.

RSD constrain the growth of structure.

$$f(z) = \frac{\mathrm{d}\ln D}{\mathrm{d}\ln a}$$

Galaxy redshift surveys

• Galaxy clustering measurements require large volumes!

- Designed to tackle CA through BAO measurements
- Final DR in Dec. 2014.
- Total area of 10,200 deg².
- Positions for $1.2 \times 10^{6} LGs$
 - LOWZ, with 0.1 < *z* < 0.43
 - CMASS, with 0.43 < z < 0.7
- A sample of 1.6 × 10⁵ QSO,
 2.3 < z < 2.8

- Designed to tackle CA through BAO measurements
- Final DR in Dec. 2014.
- Total area of 10,200 deg².
- Positions for $1.2 \times 10^6 LGs$
 - LOWZ, with 0.1 < *z* < 0.43
 - CMASS, with 0.43 < z < 0.7
- A sample of 1.6 × 10⁵ QSO,
 2.3 < z < 2.8

Reid et al. (2015)

- CMASS-DR12 monopole correlation function.
- Great improvement in statistical uncertainties.
- High-significance detection of BAO signal.
- Excellent opportunity for accurate cosmological constraints.

Modelling of LSS observations

- Systematic errors can dominate final error budget.
- Key issue: how does the BAO signal evolves with time?
- In practice, BAOs are not precisely a standard ruler (Crocce & Scoccimarro 2008, Sánchez et al. 2008).
- Our models must take into account
 - Non-linear evolution ($\delta \gtrsim 1$)
 - Redshift-space distortions ($z_{obs} = z_{cos} + u_{\parallel}/c$)

- Galaxy bias (light \neq matter, $\delta_{g} = b_1 \delta + \frac{b_2}{2} \delta^2 + \dots$)

Angle-averaged measurements

- Angle-averaged measurements have a limited constraining power.
 - **BAO**: only sensitive to a volume-averaged distance.

$$D_{\rm V}(z) = \left(D_{\rm M}(z)^2 c z / H(z)\right)^{\frac{1}{3}}$$

RSD: growth of structure is degenerate with galaxy bias $P_0(k)$ =

$$P_0(k) = b^2 \left(1 + \frac{2}{3} \frac{f}{b} + \frac{1}{5} \left(\frac{f}{b} \right)^2 \right) P(k)$$

• BOSS-DR12 anisotropic correlation function $\xi(s_{\perp}, s_{\parallel})$

- BOSS-DR12 anisotropic correlation function $\xi(s_{\perp}, s_{\parallel})$
- BAO signal appears as a ring at s = 110 Mpc/h.
- RSD distort the contours, which deviate from perfect circles.
- Using $\xi(s_{\perp}, s_{\parallel})$ is difficult (low S/N, cov. matrix)

• Project $\xi(s_{\perp}, s_{\parallel})$ into Legendre multipoles:

$$\xi_{\ell}(s) = \frac{(2\ell+1)}{2} \int_{-1}^{1} \xi(\mu, s) L_{\ell}(\mu) \,\mathrm{d}\mu$$

 Alternatively, use *clustering wedges* (Kazin, Sánchez & Blanton, 2012).

$$\xi_{\mu_1}^{\mu_2} = \frac{1}{\mu_2 - \mu_1} \int_{\mu_1}^{\mu_2} \xi(\mu, s) \mathrm{d}\mu$$

• In Fourier space: $P_{\ell}(k), P_{\mu_1}^{\mu_2}(k)$

• Project $\xi(s_{\perp}, s_{\parallel})$ into Legendre multipoles:

$$\xi_{\ell}(s) = \frac{(2\ell+1)}{2} \int_{-1}^{1} \xi(\mu, s) L_{\ell}(\mu) \,\mathrm{d}\mu$$

 Alternatively, use *clustering wedges* (Kazin, Sánchez & Blanton, 2012).

$$\xi_{\mu_1}^{\mu_2} = \frac{1}{\mu_2 - \mu_1} \int_{\mu_1}^{\mu_2} \xi(\mu, s) \mathrm{d}\mu$$

• In Fourier space: $P_{\ell}(k), P_{\mu_1}^{\mu_2}(k)$

- Anisotropic clustering
- CMASS-DR12 clustering wedges $\xi_{\perp,\parallel}(s)$.
- BAO signal can be seen in both wedges.

 $D_{\rm M}(z)/r_{\rm d},~H(z) imes r_{\rm d}$

 RSD lead to differences in shape and amplitude.

$$f\sigma_8(z)$$

Results from previous data releases

Constraining power of anis. clustering measurements

Final BOSS papers

- BAO-only: Beutler et al. (2016a), Ross et al. (2016), Vargas-Magaña et al. (2016)
- Full-shape: Beutler et al. (2016b), Grieb et al. (2016), Sánchez et al. (2016a), Shatpaty et al. (2016)
- Supporting papers: Sánchez et al. (2016), *Tinker et al.* (2016)
- Final alphabetical paper: Alam et al. (2016).
- Tomographic analyses: Salazar-Albornoz et al. (2016), Wang et al. (2016), Zhao et al. (2016).

Final BOSS papers

- BAO-only: Beutler et al. (2016a), Ross et al. (2016), Vargas-Magaña et al. (2016)
- Full-shape: Beutler et al. (2016b), Grieb et al. (2016), Sánchez et al. (2016a), Shatpaty et al. (2016)
- Supporting papers: Sánchez et al. (2016), *Tinker et al.* (2016)
- Final alphabetical paper: Alam et al. (2016).
- Tomographic analyses: Salazar-Albornoz et al. (2016), Wang et al. (2016), Zhao et al. (2016)

Final BOSS galaxy samples

• The *combined sample*: LOWZ, CMASS & EARLY regions

BOSS DR12 clustering wedges:

- MINERVA: a set of 100 DM N-body simulations.
- Cosmology from WMAP +BOSS DR9 ($\Omega_{\rm m} = 0.285$)
- $L_{\text{BOX}} = 1.5 \text{ Gpc}/h, N = 1000^3$
- Snapshots at z = 0, 0.3, 0.57, 1 & 2
- Galaxies with HOD matching CMASS $\xi(s)$

- MINERVA: a set of 100 DM N-body simulations.
- Cosmology from WMAP +BOSS DR9 ($\Omega_{\rm m} = 0.285$)
- $L_{\text{BOX}} = 1.5 \text{ Gpc}/h, N = 1000^3$
- Snapshots at z = 0, 0.3, 0.57, 1 & 2
- Galaxies with HOD matching CMASS $\xi(s)$

Excellent agreement with Minerva

Excellent agreement with Minerva

BOSS DR12 clustering wedges:

Clustering tomography

• Potential problems of 3D clustering measurements:

- Require a fiducial cosmology to transform *z* into *r*.
- Correspond to the average over a large volume.
- Alternative: measure $w(\theta)$ in thin redshift shells (Salazar-Albornoz et al. 2014).
 - Relies on observable quantities (no fid. cosmology).
 - Probes the redshift evolution of the galaxy clustering.

Clustering tomography

• Tomographic analysis of BOSS DR12.

Clustering tomography

- We can explore the redshift evolution of the linear bias.
- Points show individual fits to $18 w(\theta)$ BOSS measurements.
- The green band shows the result from PATCHY.
- The dashed lines show the constraints on b(z) assuming

$$b(z) = b_1 + b'(z - z_{\rm ref})$$

The ACDM model

- Our results are consistent with the ΛCDM model.
- Assuming a constant *w*_{DE}

 $w_{\rm DE} = -0.991 \pm 0.055$ $\Omega_{\rm m} = 0.308 \pm 0.013$

• Our previous analysis

 $\delta w_{\rm DE} = 0.076 \ ({
m DR11})$ $\delta w_{
m DE} = 0.072 \ ({
m DR12})$

- Our results are consistent with the ΛCDM model.
- Assuming a constant *w*_{DE}

 $w_{\rm DE} = -0.991 \pm 0.055$ $\Omega_{\rm m} = 0.308 \pm 0.013$

Adding SN information

 $w_{\rm DE} = -0.996 \pm 0.042$ $\Omega_{\rm m} = 0.306 \pm 0.010$

- Our results are consistent with the ΛCDM model.
- Allowing w_{DE} to evolve as

$$w_{\rm DE}(a) = w_0 + w_a (1 - a)$$

$$w_0 = -0.92 \pm 0.11$$

 $w_a = -0.32 \pm 0.40$

Testing general relativity

• General relativity predicts

 $f(z) = \Omega_{\rm m}(z)^{\gamma}$

with $\gamma \simeq 0.55$

- Deviations from this value could indicate a failure of GR.
- Combining Planck+BOSS $\gamma = 0.61 \pm 0.08$ $\gamma = 0.69 \pm 0.15$ (DR11)

- Galaxy surveys require considerable resources from the community.
- Effort to maximise the information extracted from these data sets.
- Question often posed as which statistic or method should be used (e.g. $P(k) \operatorname{vs} \xi(s)$).
- Additional information can be obtained from the combination of different results.

- Galaxy clustering information can be compressed into a set of parameters **D** (e.g. $D_{\rm M}(z)/r_{\rm d}, H(z)r_{\rm d}, f\sigma_8(z)$)
- A set of *m* measurements D_i, C_{ii} can be combined into a set of *consensus constraints* D_c, C_c(Sánchez et al. 2016b)

• Application to BOSS DR12 results:

 Consensus constraints are ~10 to 20% tighter than the most accurate measurement from the original set.

Good agreement with the Planck ΛCDM prediction.

• All analyses are combined into our final consensus constraints on $D_{\rm M}(z)$, H(z) and $f\sigma_8(z)$

https://www.sdss3.org/science/boss_publications.php

Cosmological implications explored in Alam et al. (2016)

Future galaxy surveys

- A new generation of large volume galaxy surveys:
 - BOSS: LG at 0.2 < z < 0.7
 & QSO 2.3 < z < 2.8
 - **eBOSS**: LRGs, ELGs, QSO
 at 0.7 < z < 2.8
 - **PFS**: ELGs, 0.6 < *z* < 2.2
 - HETDEX: Ly-α emitters,
 1.9 < z < 3.5
 - **Euclid:** H-*α* emitters,
 0.6 < z < 2

Future galaxy surveys

- A new generation of large volume galaxy surveys:
 - BOSS: LG at 0.2 < z < 0.7
 & QSO 2.3 < z < 2.8
 - **eBOSS**: LRGs, ELGs, QSO
 at 0.7 < z < 2.8
 - **PFS**: ELGs, 0.6 < *z* < 2.2
 - HETDEX: Ly-α emitters,
 1.9 < z < 3.5
 - **Euclid:** H-*α* emitters,
 0.6 < z < 2

Final remarks

- Analysis of the final BOSS galaxy sample completed.
- Several analysis methods based on the same underlying model.
- Improved methodology leads to an increase in the constraining power of the sample.
- BOSS has shown that BAO & RSD can be used as robust and accurate cosmological probes.
- A quality jump in our use of LSS to constrain deviations from ΛCDM, which will be extended to future surveys.