The Higgs Boson and its Properties

- Masses increase with each generation
 - $m_e \approx 0.5 \text{ MeV}$
 - $m_{\mu} \approx 106 \text{ MeV}$
 - $m_{top} \approx 173000 \text{ MeV} = 173 \text{ GeV} (\approx m_{Gold})$

- Force carriers:
 - photon (γ), gluons (g), W^{\pm} and Z^{0} bosons
 - must be massless...

- Force carriers:
 - photon (γ), gluons (g), W^{\pm} and Z^{0} bosons
 - must be massless...

The problem of gauge boson masses:

• Principle of local gauge invariance:

 $\psi \to e^{i\alpha(x)}\psi$

- The problem of gauge boson masses:
 - Principle of local gauge invariance:

$$\psi \to e^{i\alpha(x)}\psi$$

• Gauge fields (~ force carriers), transform as:

$$A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha$$

The problem of gauge boson masses:

• Principle of local gauge invariance:

$$\psi \to e^{i\alpha(x)}\psi$$

• Gauge fields (~ force carriers), transform as:

$$A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha$$

• Problem:

$$\frac{1}{2}m_A^2 A_\mu A^\mu = \frac{1}{2}m_A^2 \left(A_\mu + \frac{1}{e}\partial_\mu\alpha\right) \left(A^\mu + \frac{1}{e}\partial^\mu\alpha\right) \neq \frac{1}{2}m_A^2 A_\mu A^\mu$$

• Introduce complex scalar field:

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

• with potential:

$$V(\phi) = \mu^2 \left(\phi^{\dagger} \phi\right) + \lambda \left(\phi^{\dagger} \phi\right)^2$$

For $\lambda > 0$, $\mu^2 > 0$:

REBURG

• Introduce complex scalar field:

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$$

• with potential:

$$V(\phi) = \mu^2 \left(\phi^{\dagger}\phi\right) + \lambda \left(\phi^{\dagger}\phi\right)^2$$

For **λ>0**, **μ²<0**:

Spontaneous symmetry breaking

JBURG

Lagrangian after electroweak Symmetry Breaking

• Resulting Higgs-boson Lagrangian: $\mathcal{L}_{H} = \frac{1}{2} \partial_{\mu} H \partial^{\mu} H + (v+H)^{2} \left(\frac{g^{2}}{4} W^{\dagger}_{\mu} W^{\mu} + \frac{g^{2}}{8 \cos^{2} \theta_{W}} Z_{\mu} Z^{\mu} \right) - \lambda v^{2} H^{2} - \lambda v H^{3} - \frac{\lambda}{4} H^{4}$

JBURG

• Fermion mass terms via Yukawa couplings λ_f :

$$\mathcal{L}_{\text{fermion}} = -\lambda_f \left[\bar{\psi}_L \phi \psi_R + \bar{\psi}_R \phi \psi_L \right]$$
$$= -\frac{\lambda_f v}{\sqrt{2}} \bar{\psi} \psi \qquad -\frac{\lambda_f}{\sqrt{2}} H \bar{\psi} \psi$$

• Fermion mass terms via Yukawa couplings λ_f :

$$\begin{split} \mathcal{L}_{\text{fermion}} &= -\lambda_f \left[\bar{\psi}_L \phi \psi_R + \bar{\psi}_R \phi \psi_L \right] \\ &= -\frac{\lambda_f v}{\sqrt{2}} \bar{\psi} \psi - \frac{\lambda_f}{\sqrt{2}} H \bar{\psi} \psi \\ \text{fermion mass} \\ \lambda_f &= \sqrt{2} \frac{m_f}{v} \end{split}$$

• Fermion mass terms via Yukawa couplings λ_f :

$$\mathcal{L}_{\text{fermion}} = -\lambda_f \left[\bar{\psi}_L \phi \psi_R + \bar{\psi}_R \phi \psi_L \right] \\ = -\frac{\lambda_f v}{\sqrt{2}} \bar{\psi} \psi \left[-\frac{\lambda_f}{\sqrt{2}} H \bar{\psi} \psi \right]$$

$$f_R \longrightarrow f_L \longrightarrow$$

One of the primary goals to build the Large Hadron Collider was to find (or exclude the presence of) the Higgs boson

- Proton-proton collision energy E
 - 7 TeV (2011), 8 TeV (2012): "Run 1"
 - I3TeV (2015-...):"Run 2"

- Proton-proton collision energy E
 - 7 TeV (2011), 8 TeV (2012): "Run 1"
 - I3TeV (2015-...): "Run 2"
- Luminosity
 - Instantaneous luminosity
 - Integrated Luminosity L =

- Proton-proton collision energy E
 - 7 TeV (2011), 8 TeV (2012): "Run 1"....25 fb⁻¹
- Luminosity
 - Instantaneous luminosity
 - Integrated Luminosity L =

- Proton-proton collision energy E
 - 7 TeV (2011), 8 TeV (2012): "Run 1"....25 fb-
- Luminosity
 - Instantaneous luminosity
 - Integrated Luminosity L =
 - Number of produced events N =
 - <u>Run I</u>
 - <u>Run 2</u>

Higgs Boson Production

Karsten Köneke

Higgs Boson Decay

The ATLAS Detector

How do we find the Higgs Boson?

- Search in "clean" signatures: leptons or photons
- Calculate "invariant mass" of decay products

$$m^{2} = |\mathbf{p}_{1} + \mathbf{p}_{2}|^{2} = (E_{1} + E_{2})^{2} - |\vec{p}_{1} + \vec{p}_{2}|^{2}$$

 Plot mass of every selected event into histogram and look for signal peak over background

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

$H \rightarrow \gamma \gamma$

<u>Strategy:</u>

- Select two isolated photons
- Calculate di-photon invariant mass and fit distribution

Complete Run I data! Expect ~1400 Higgs Bosons

$\vdash \rightarrow \gamma \gamma$

Strategy:

How sure are we?

- Calculate the ''p-value'':
 - I. Build probability density distribution f for background-only hypothesis H_0 : $f(x|H_0)$
 - 2. Probability to obtain result x_{obs} or less likely, given $f(x|H_0)$: $p = \int_{-\infty}^{\infty} f(x|H_0) dx$

How sure are we?

- Calculate the ''p-value'':
 - I. Build probability density distribution f for background-only hypothesis H_0 : $f(x|H_0)$
 - 2. Probability to obtain result x_{obs} or less likely, given $f(x|H_0)$:

 $H \to ZZ^* \to 4\ell$

- Strategy:
 - Identify 4 isolated leptons (electrons, muons)

- Strategy:
 - Identify 4 isolated leptons (electrons, muons)
 - Calculate invariant mass
- Conditions:
 - Tiny overall branching ratio:
 - BR(H → ZZ*) ≈ 2.6%
 - BR($Z \rightarrow \ell \ell$) $\approx 3.4\%$
 - ⇒ Expect ~75 Higgs bosons in this decay!
- Result:
 - Significance: <mark>8.2σ</mark>
 - Signal strength: $\mu = 1.50 \stackrel{+0.35}{_{-0.31}}(\text{stat}) \stackrel{+0.19}{_{-0.13}}(\text{sys})$

- Mass **m**_H
- Spin and CP
- Interactions with other particles

Mass Measurement

- Not predicted by theory
 - Once measured by experiment, everything else is determined
- Use high-resolution $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels:

But is it **the** Higgs Boson?

Need to determine its other properties precisely:

- Spin and CP
- Production rates
- Couplings to bosons and fermions
 - According to boson and fermion masses?

Why Spin 0?

- Vacuum:
 - No charge:
 - Rotationally invariant, *i.e.*, no preferred direction
- Higgs boson should have same quantum numbers as observed vacuum:
 - No charge: 👍
 - Mass cannot depend on direction
 ⇒ Spin 0

Spin and CP

▼z'

 Z_1

Standard Model Higgs boson: **J^{PC} = 0**++

- Charge conjugation: change sign of all quantum numbers
- **P**arity ("mirror") transformation": $\hat{P} \vec{x} \rightarrow -\vec{x}$
- Strategy: falsify other hypotheses (0⁻, 1⁺, 1⁻, 2⁺, 2⁻), demonstrate consistency with 0⁺ hypothesis
- Spin-I excluded by observed H $\rightarrow \gamma\gamma$
- Use angular variables
- Calculate likelihood ratio between alternative hypothesis and standard $J^P = 0^+$ hypothesis

REBURG

Spin and CP

Spin and CP

But is it **the** Higgs Boson?

Need to determine its other properties precisely:

- ✓ Spin and CP
- Production rates
- Couplings to bosons and fermions
 - According to boson and fermion masses?

Model and fit framework:

 Once Higgs boson mass is known, all other Higgs-boson parameters are fixed in the SM

LHC Higgs XSWG (arxiv: 1307.1347)

- To allow for measurement deviations from SM rates, introduce coupling scale factors: $\kappa=\frac{g}{g_{\rm SM}}$

$$(\sigma \cdot BF) (i \to H \to j) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$
$$= \sigma_{SM} (i \to H) \cdot BF_{SM} (H \to f) \cdot \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

Assumption:

• Only one SM Higgs-like state at \sim I 25 GeV with negligible width

Karsten Köneke

Coupling to Fermions and Bosons

REBURC

LHC Run 2

$E_{CM} = 13 \text{ TeV}$

-2

0

Karsten Köneke

0.28

0.26 TT

35

5

⊢ Total

 μ_{ttH} = -0.25 $^{+1.26}_{-0.99}$

 μ_{VH} = 0.23 $^{+1.27}_{-1.05}$

 $\mu_{VBF}^{~~+~0.80} = 2.24 \ ^{+~0.80}_{-~0.71}$

 $\mu_{ggH}\ = 0.59 \ ^{+\,0.29}_{-\,0.28}$

= 0.85

 $\mu_{\frac{Run-2}{}}$

 μ_{Run-1}

3

2

Fiducial and total x-sections:

• Fit in m₄₁

Production mode studies:

• Narrow m₄₁ region categorization

 $\ell \nu \ell \nu$

$H \rightarrow \mu\mu$

Strategy:

- 2 opposite sign muons, MET < 80 GeV, b-veto
- VBF-enriched SR (BDT) (new in run-2)
- 6 ggF-enriched SRs:
 - 3 p_T($\mu\mu$) bins
 - 2 $\eta(\mu)$ bins (forward/central)

ATL-CONF-2016-041

Combination and Interpretation

<u>So far:</u>

- **κ**-framework:
 - Only considers rates
- Spin and CP measurements:
 - Only considers shapes

Want: measure full tensor structure of Higgs boson couplings

- One option: effective field theory
 - Assume no new particles below Λ < I TeV
 - Write down all possible interactions consistent with SM symmetries up to dimension 6

- Fixed $\Lambda < 1$ TeV (convention), $c_{\alpha} = \cos(\alpha) = 1/\sqrt{2}$ (redundant)
- Implemented in MadGraph5_aMC@NLO (HC_UFO)

- Measurements based on formulation of Likelihood $\mathcal{L}(x|\theta)$
- Predict observable distribution from composite model:
 - HEP model \otimes simulation \otimes detector response \otimes reconstruction
- Interpolate smoothly $\mathcal{L}(x|\theta = -1, 0, 1) \longrightarrow \mathcal{L}(x|\theta)$

Example: g_{SM} and g_{BSM} in one vertex

- Cross section ~ $|\text{matrix element}|^2$: $\mathcal{M}(g_{\text{SM}}, g_{\text{BSM}}) = g_{\text{SM}}\mathcal{O}_{\text{SM}} + g_{\text{BSM}}\mathcal{O}_{\text{BSM}}$ $T \propto |\mathcal{M}(g_{\text{SM}}, g_{\text{BSM}})|^2 = g_{\text{SM}}^2 |\mathcal{O}_{\text{SM}}|^2 + g_{\text{BSM}}^2 |\mathcal{O}_{\text{BSM}}|^2$
 - $+2g_{\rm SM}g_{\rm BSM}\mathcal{R}(\mathcal{O}_{\rm SM}^*\mathcal{O}_{\rm BSM})$

Example: g_{SM} and g_{BSM} in one vertex

- $\mathcal{M}(g_{\rm SM},g_{\rm BSM}) = g_{\rm SM}\mathcal{O}_{\rm SM} + g_{\rm BSM}\mathcal{O}_{\rm BSM}$ $T \propto |\mathcal{M}(g_{\rm SM}, g_{\rm BSM})|^2 = g_{\rm SM}^2 |\mathcal{O}_{\rm SM}|^2 + g_{\rm BSM}^2 |\mathcal{O}_{\rm BSM}|^2$ $+2g_{\rm SM}g_{\rm BSM}\mathcal{R}(\mathcal{O}_{\rm SM}^*\mathcal{O}_{\rm BSM})$
- With 3 unique terms, need 3 input samples $T_{i,in}$: $N_{\rm in}=3$ $\vec{g}_{\rm out}$ variable $T_{\text{out}}(\vec{g}_{\text{out}}) = \sum w_i(\vec{g}_{\text{out}}; \vec{g}_i) \cdot T_{i,\text{in}}(\vec{g}_i)$ \vec{q}_i fixed
- Ansatz: $w_i = a_{i1} \cdot g_{SM}^2 + a_{i2} \cdot g_{SM}g_{BSM} + a_{i3} \cdot g_{BSM}^2$
- Calculate a_{ij} from closure condition $w_i = \delta_{ij}$ for $\vec{g}_{out} = \vec{g}_j$
- Linear system of equations, *i.e.*, matrix inversion

- Example:
 - BSM coupling parameter in interaction of Higgs boson to SM particles (EFT)

• RooFit implementation: RooEFTMorphFunc

Observable

- Find set of input samples with:
 - robust morphing performance
 - minimal statistical uncertainty in target region
- \Rightarrow Non-trivial problem: constrained optimization

Benefits of Morphing ATL-PHYS-PUB-2015-047

• Computationally fast & convenient:

Morphing	Matrix-element reweighting
 Use final histograms 	For every scenario:
 Only calculates linear sums of coefficients All other inputs are 	 write events to disk rerun analysis additional interpolation
pre-computed once	

- Can be applied directly and without change to differential or total cross sections (truth or reconstructed)
- Description of rates and shapes is exact, continuous, and analytical

Outlook

- Many measurements are still limited by number of recorded events
- New possibilities with *millions of produced Higgs bosons*:
 - Rare production and decay modes
 - High-precision measurements
 - Constraints on BSM parameters
- Significant advances in theory, crucial for interpretation of measurements
 - e.g., improvement in ggF cross-section calculation:
 - one more order in perturbative expansion (N³LO QCD)
 - theory uncertainty: $8.5\% \rightarrow 5.0\%$

Summary

Finding the Higgs boson has been a breakthrough

- One of the main reasons to build the LHC
- Higgs boson well established
- What we know about the Higgs boson
 - m_H = 125.09 ± 0.24 GeV (2‰ precision)
 - Predicted properties (J^P = 0⁺, couplings)
 consistent with SM expectations

• Transition to precision measurement phase

- First set of $\sqrt{s} = 13$ TeV results available

- Very active field of Higgs-boson property measurements
 - Effective Lagrangian Morphing
- Exciting possibilities to uncover new phenomena in Higgs-boson sector

References

All ATLAS references are linked from:

<u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>HiggsPublicResults</u>

All CMS references are linked from:

<u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsHIG</u>

What is it and

where does it come from?

Mass in Atoms:

• > 99.9% in the nucleus

EBURG

Mass in Atoms:

> 99.9% in the nucleus

Mass in the nucleus:

• ~95% due to **binding energy** of <u>strong nuclear force</u>

$E = mc^2$

Overall diameter : 15.0 m **Overall length** : 28.7 m Magnetic field : 3.8 T

~7k channels

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip & 432 Resistive Plate Chambers

On July 4th 2012

- Strategy:
 - 2 isolated leptons (electrons, muons) and missing transverse momentum (neutrinos)

- Fit
$$m_{\rm T} = \sqrt{\left(E_{\rm T}^{\ \ell\ell} + p_{\rm T}^{\ \nu\nu}\right)^2 - \left| \, \boldsymbol{p}_{\rm T}^{\ \ell\ell} + \boldsymbol{p}_{\rm T}^{\ \nu\nu} \, \right|^2}$$

- Conditions:
 - Large BR(H → WW*) ≈ 22%
 - BR($W \rightarrow \ell \nu$) \approx 10.8%
 - ⇒ Expect ~6500 Higgs bosons in this decay, j
 but also large backgrounds
- Result:
 - Total significance (ggF+VBF): <mark>6.Ισ</mark>
 - Combined signal strength: $\mu = 1.09 \; ^{+0.23}_{-0.21}$

Vector-Boson Fusion vs. Gluon Fusion

Individual compatibility with SM:

- VBF significance: 3.2σ
- Fit μ_{ggF} and μ_{VBF} simultaneously
- Observed signal strengths for ggF and VBF production modes:

 $\mu_{ggF} = 1.02^{+0.29}_{-0.26}$ $\mu_{VBF} = 1.27^{+0.53}_{-0.45}$

$H \rightarrow bb$

- Largest BR(H → bb) ≈ 58%
 but huge backgrounds
- VH associated production

$H \rightarrow \tau \tau$

- Moderate $BR(H \rightarrow \tau \tau) \approx 6.3\%$
 - all $\tau\tau$ decays analyzed
- VBF and ggF production

$\vdash \rightarrow \bigvee \bigvee ^* \rightarrow \ell \nu \ell \nu$

- Strategy:
 - 4 isolated leptons (electrons, muons) and missing transverse momentum (neutrinos)
 - Fit $m_{\rm T} = \sqrt{\left(E_{\rm T}^{\ \ell\ell} + p_{\rm T}^{\ \nu\nu}\right)^2 \left| \boldsymbol{p}_{\rm T}^{\ \ell\ell} + \boldsymbol{p}_{\rm T}^{\ \nu\nu} \right|^2} \, \vec{\Delta}$
- Conditions:
 - Large BR(H → WW*) ≈ 22%
 - BR($W \rightarrow \ell \nu$) \approx 10.8%
 - ⇒ Expect ~6500 Higgs bosons in this decay, j
 but also large backgrounds
- Result:
 - Significance: <mark>4.3</mark>σ

 m_{T} [GeV]

$\vdash \rightarrow \bigvee \bigvee ^* \rightarrow \ell \nu \ell \nu$

- Strategy:
 - Combine information using **machine learning**
 - Fit resulting classifier
- Conditions:
 - Small $\sigma_{\text{VBF}} \approx 1.6 \text{ pb}$

- ⇒ Expect ~400 Higgs bosons in this channel, and also large backgrounds
- Result:
 - Significance: <mark>3.2</mark>σ
 - Total significance (ggF+VBF): 6.Ισ
 - Combined signal strength: $\mu = 1.09 \ ^{+0.23}_{-0.21}$

$H \rightarrow bb$

- Largest BR(H → bb) ≈ 58%
 - but huge backgrounds
- VH associated production

Higgs Boson Mass

- Not predicted by theory
 - Once measured by experiment, everything else is determined

Mass Measurement

<u>Use high-resolution $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 41$ channels:</u>

- I. Calibrate your detector as good as possible
- 2. Determine signal line shape

Higgs Boson Width

• Expected width: $\Gamma_{H,SM} \approx 4 \text{ MeV}$

- Use H \rightarrow WW^(*) and H \rightarrow ZZ^(*)
- ATLAS result: $\Gamma_{H} < 22.7 \text{ MeV} @ 95\% \text{ CL} (5.5 \times \Gamma_{H,SM})$
- Caveats:
 - gg → WW and gg → ZZ cross
 sections not well known
 - Vary by factor 2
 - New physics effects could change high-mass behavior
 - Assuming on-shell coupling is same as off-shell coupling
 - Disputed assumption

- Expected width: $\Gamma_{H,SM} \approx 4 \text{ MeV}$
 - Too small to measure (exp. resolution: I-2 GeV)
 - Direct limits: $\Gamma_{\rm H} < 1.7 \, {\rm GeV}$ (~400 × $\Gamma_{\rm H,SM}$)

- Expected width: $\Gamma_{H,SM} \approx 4 \text{ MeV}$
 - Too small to measure (exp. resolution: I-2 GeV)
 - Direct limits: $\Gamma_{\rm H} < 1.7 \, {\rm GeV}$ (~400 × $\Gamma_{\rm H,SM}$)
- Maybe via lifetime,
 i.e., if it flies far enough?
 - $\tau = \hbar/\Gamma \approx 1.6 \times 10^{-22} \text{ s}$ $\Rightarrow c \tau \approx 5 \times 10^{-14} \text{ m}$

Why Spin 0 and even Parity?

- Should have same quantum numbers as observed vacuum:
 - No charge: 👍
 - Rotationally invariant, *i.e.*, no preferred direction
 - Invariant under **Parity** ("mirror") transformation: $\hat{P} \vec{X} \rightarrow -\vec{X}$

Karsten Köneke

Temperature: T(x,y,z,t)Each point has magnitude \Rightarrow Spin 0

Windspeed: $\vec{W}(x,y,z,t)$ 0 Each point has also direction \Rightarrow Spin I

10m Wind Europa (umgerechnet in m/s)

91

20

19 18 17

16 15

13

0 m/s

Analogon:

Why Spin 0 and even Parity?

Daten: GFS-Modell

(C) Wetterzentrale www.wetterzentrale.de

• Should have same quantum numbers as observed vacuum:

- No charge: 👍
- Rotationally invariant, i.e., no preferred direction
- Invariant under **Parity** ("mirror") transformation: $\hat{P} \vec{X} \rightarrow -\vec{X}$
- Mass cannot depend on direction
 ⇒ Higgs-field must be Spin 0
- Vacuum invariant unter mirror transformation: $\hat{P} \Psi(\vec{x},t) = \Psi(-\vec{x},t) = +\Psi(\vec{x},t)$ \Rightarrow even parity: $P \stackrel{!}{=} "+"$

Why Spin 0 and even Parity?

$$\mu_{\text{ggF}} \propto \frac{\kappa_F^2 \cdot \kappa_V^2}{\left(\mathcal{B}_{H \to f\bar{f}} + \mathcal{B}_{H \to gg}\right) \kappa_F^2 + \left(\mathcal{B}_{H \to VV}\right) \kappa_V^2}}{\frac{\kappa_V^4}{\left(\mathcal{B}_{H \to f\bar{f}} + \mathcal{B}_{H \to gg}\right) \kappa_F^2 + \left(\mathcal{B}_{H \to VV}\right) \kappa_V^2}}$$

ATL-CONF-2016-067

di-photon selection Strategy: Fit $m_{\gamma\gamma}$ in many production mode sensitive categories ttH - leptonic Measure fiducial, differential, and production cross-sections ttH - hadronic d*o*_{fid} / d*p*_T^{YY} [fb/GeV] m_н = 125.09 GeV **ATLAS** Preliminary $gg \rightarrow H$ NNLOPS + XH + data, tot. unc. Syst. unc. **Di-lepton** $k_{gg \rightarrow H} = 1.10$ $H \rightarrow \gamma \gamma$, $\sqrt{s} = 13 \text{ TeV}$, 13.3 fb⁻¹ $Z(\rightarrow II)H$ ---XH = VBF + VH + ttH**One-lepton** $W(\rightarrow hv)H$ E_{τ}^{miss} significance 0.5 $Z(\rightarrow \nu\nu)H$; $W(\rightarrow h\nu)H$ tight Low-mass two-jets $W(\rightarrow jj)H,\,Z(\rightarrow jj)H$ loose data / prediction 2 tight High-mass two-jets **VBF** loose 4η -p_{Tt} rest 120 160 180 200 80 100 140 0 20 40 60 ggF $p_{\rm T}^{\gamma\gamma}$ [GeV]

• As many input templates N as unique terms in $|\mathcal{M}(\vec{g})|^2$

$$T(\vec{g}) \propto |\mathcal{M}(\vec{g})|^2 = \underbrace{\left(\sum_{i=1}^{n_p+n_s} g_i \mathcal{O}_i\right)^2}_{\text{production vertex}} \cdot \underbrace{\left(\sum_{j=1}^{n_d+n_s} g_j \mathcal{O}_j\right)^2}_{\text{decay vertex}}$$

- n_s : Number of shared couplings in production and decay vertex.
- n_p : Number of couplings only in production.
- n_d : Number of couplings only in decay.

$$N = \frac{n_{p}(n_{p}+1)}{2} \cdot \frac{n_{d}(n_{d}+1)}{2} + \binom{4+n_{s}-1}{4} + \binom{3}{30} + \binom{3}{30} + \binom{3}{2} + \binom{n_{p} \cdot n_{s} + \frac{n_{s}(n_{s}+1)}{2}}{2} \cdot \frac{n_{p}(n_{p}+1)}{2} + \frac{n_{s}(n_{s}+1)}{2} \cdot n_{p} \cdot n_{d} + (n_{p}+n_{d})\binom{3+n_{s}-1}{3}.$$

Proof-of-Concept: ggF H \rightarrow ZZ* ATL-PHYS-PUB-2015-047 $\cos \alpha$ $\kappa_{\rm SM}$ κ_{Azz} κ_{Hgg} 0.000 Input Sample 0 1.000 1.000 1.000 Input Sample 1 0.000 13.938 1.414 0.707 Input Sample 2 13.938 0.707 1.414 1.414 Validation Sample 1 1.000 0.250 0.707 1.414

Mass in our Universe

UND FREBURG

Dark matter

Dark matter

What did we know before the LHC?

m_H > 114.4 GeV @ 95% CL

 m_H , m_t and m_W are connected through radiative corrections in the Standard Model:

BURG

 m_H , m_t and m_W are connected through radiative corrections in the Standard Model:

EBURG

Mean Number of Interactions per Crossing

Rediscovery of the Standard Model

JBURG

CP Admixture

- Higgs boson could be mixed state of CP-even and CP-odd
 - Mixing described by $\cos \alpha$
 - Beyond-SM coupling to vector bosons described by κ_{HVV} (CP-even) and κ_{AVV} (CP-odd)

Combine background-discriminating variables into BDT

 $\Sigma C_{\rm I}$

BDT modelling validated in background regions

Results: Gluon Fusion

Also look at ≥ 2 jet ggF region:

- Result is part of combined ggF significance shown on previous page
- ggF signal significance in ≥ 2 jet region alone: 1.4 σ (1.2 σ) observed (expected) @m_H = 125.36 GeV

Signal Strength vs. mH

Assess compatibility with SM:

- Observed best-fit value μ vs. m_H
- Let total yield and m_H unconstrained

Evidence for VBF production:

- ggF contribution in ≥2-jet region is ~30%
- Run global fit to determine μ_{VBF}/μ_{ggF}
- Branching fraction cancels in ratio

Fermion vs. Boson Couplings

Fit simultaneously for coupling scale factor to fermions and vector bosons:

- Fermion coupling from top-loop in gluon-fusion production
- Vector-boson coupling from decay and VBF production

Observations:

$$\kappa_{V} = 1.04 \pm 0.11$$

 $\kappa_{F} = 0.93 \stackrel{+0.32}{_{-0.23}}$

- Excellent agreement with SM expectation
- Good precision for $\kappa_{\rm V}$

Determining the Spin and CP Structure

- Standard Model Higgs boson: $J^{CP} = 0^{++}$
- Test against alternative hypothesis:
 - Spin 2 minimal coupling models (graviton-like):

$$\mathcal{L}_{2}^{p} = \sum_{p=V,f} -\frac{1}{\Lambda} \kappa_{p} T_{\mu\nu}^{p} X_{2}^{\mu\nu}$$

BURG

Determining the Spin and CP Structure

- Standard Model Higgs boson: $J^{CP} = 0^{++}$
- Test against alternative hypothesis:
 - Spin 2 minimal coupling models (graviton-like):

$$\mathcal{L}_{2}^{p} = \sum_{p=V,f} -\frac{1}{\Lambda} \kappa_{p} T_{\mu\nu}^{p} X_{2}^{\mu\nu}$$

- Spin 0, including mixing between SM and BSM states:

$$\mathcal{L}_{0}^{W} = \left\{ c_{\alpha} \kappa_{\rm SM} [g_{\rm HWW} W_{\mu}^{+} W^{-\mu}] - \frac{1}{2} \frac{1}{\Lambda} [c_{\alpha} \kappa_{\rm HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{\rm AWW} W_{\mu\nu}^{+} \widetilde{W}^{-\mu\nu}] - \frac{1}{\Lambda} c_{\alpha} [(\kappa_{\rm H\partial W} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c.)] \right\} X_{0} ,$$

BURG

