

Questions to AMS-02:

Are there galaxies made of anti-matter in the Universe? What is the nature of Dark Matter? How do cosmic rays propagate in the Galaxy?

The search for antimatter in the Universe

AMS on the ISS

The Universe was created in the Big Bang.

anti-matter.

The search for antimatter in the Universe

AMS on the ISS

The Universe was created in the Big Bang.

Atomic nuclei are accelerated in supernovae to very high energies and become cosmic rays.

Are there anti-galaxies in the Universe?

Can we observe an anti-carbon nucleus from a far distant supernova?

Relic Dark Matter

Dark matter makes up a substantial fraction of the energy density of the Universe. But what is its nature?

Freeze-out in the early Universe:

$$\Omega_{\chi} h^2 \approx \frac{3 \cdot 10^{-27} \,\mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v \rangle}$$

relic density ↔ annihilation cross section

Dark Matter annihilation

Products of Dark Matter annihilations get injected into the cosmic-ray sea:

most promising channels: e+, p, D, (He), (and photons)

Cosmic ray physics in a nutshell

Image: GALEX, JPL-Caltech, NAS, Drawing: APS/Alan Stonebraker

Excellent results from PAMELA

 Results span 4 decades in energy and 13 in fluxes

The PAMELA Mission: Heralding a new era in precision cosmic ray physics

O. Adriani ^{a,b}, G.C. Barbarino ^{c,d}, G.A. Bazilevskaya ^e, R. Bellotti ^{f,g}, M. Boezio ^h, E.A. Bogomolov¹, M. Bongi ^{a,b}, V. Bonvicini^a, S. Bottai ^b, A. Bruno ^{f,g}, F. Cafagna ^g, D. Campana ^d, R. Carbone ^{d,b}, P. Carlsoni^a, M. Casolino ¹, G. Castellini ^m, M.P. De Pascale ^{1,a,1}, C. De Santis ^{1,a}, N. De Simone ¹, V. Di Felice ¹, V. Formato ^{h,g}, A.M., Galper ^p, U. Giaccari ^a, A.V. Karelin ^p, M.D. Kheymits ^p, S.V. Koldashov ^p, S, Koldobskiy P, S,Yu, Krur'kov I, A,N, Kvashnin e, A, Leonov P, V, Malakhov P, L. Marcelliⁿ, M. Martucci^{n,4}, A.G. Mayorov^p, W. Menn^r, V.V. Mikhailov^p, E. Mocchiurtiⁿ, A. Monaco¹, N. Mori^{2,b}, R. Munini^{n,3,k,p}, N. Nikonov^{1,n}, G. Osteria^d, P. Papini^b, M. Pearce^{1,k}, P. Picozza^{1,n,e}, C. Pizzolotto^{h,5,‡}, M. Ricci^q, S.B. Ricciarini^{b,m}, L. Rossetto^{1,k}, R. Sarkar^h, M. Simon^r, R. Sparvoli^{1,n}, P. Spillantini^{2,b}, Y.I. Stozhkov^e, A. Vacchiⁿ, E. Vannucciniⁿ, G.I. Vasilyev¹, S.A., Voronov P. J., Wu j.ku, Y.T. Yurkin P. G. Zampah, N. Zampah, V.G. Zverev P

*University of Florence, Department of Physics, I-50019 Sea o Florenchio, Florence, Italy *IMFN, Sezione di Rorance, I-50019 Sexio Florencho, Florence, Iraly ¹ University of Napies "Federico II", Department of Physics, I-801 26 Napies, Iody *INFN, Sea me di Napies, I-801 26 Napies, Iody

*Lebedov Physical Insekure, 811-119991 Moscow, Russia *University of Bart, Department of Rhysics, 1-701 26 Bart, Italy

*IMRA, Sezione di Bart, 1-70126 Bart, Edy *IMFN, Sezione di Triese, I-34 I 40 Triese, i koly

Toffe Physical Technical Incheses, 85-1 94021 Sc. Petersburg, Russia

RTH Royd Insekure of Technology, Department of Physics, AlbaNova University Canare, 55-10891 Southhalm, Swede The Osker Kietn Centre for Cosma particle Physics, AlberNove University Centre, SE-10001 Stockhalm, Sweden

"IMPA, Sezione di Rome "Tor Vergova", 1-001 33 Rome, Ivaly ** FAC, I-50019 Sesso Floren ship, Florence, Isaly

*University of Rome 'Tar Vargues', Department of Physics, I-00133 Rome, Italy
*University of Tricese, Department of Physics, I-34147 Tricese, Italy

PMaxional Research Muclear University MESHI (Moscow Physics Engineering Insekure), RU-115409 Muscow, Russia

SINFN, Labora ori Nazion di di Frascari, 2-00044 Frascari, Ivaly

"Universide Siegen, Deparamene of Physics, D-57068 Siegen, Germany

* MFN, Sezione di Perugia, 1-861 23 Perugia, Irdy

"A genzia Speziale Ivaliana (ASF) Science Dava Cenver, I-00044 Frascavi, Ivaly

School of Machemarics and Rhysics, China University of Geosciences, CN-430074 Wishen, China

AMS-02: A TeV precision, multi-purpose spectrometer

1 out of more than 80,000,000,000 events:

1.03 TeV electron

Tests at CERN AMS in accelerator test beams Feb 4-8 and Aug 8-20, 2010

Particle	Momentum (GeV/c)	Positions
Protons	180, 400	1,650
Electrons	100, 120, 180, 290	7 each
Positrons	10, 20, 60, 80, 120, 180	7 each
Pions	20, 60, 80, 100, 120, 180	7 each

Tracker: Rigidity resolution

Comparison between TB and MC p/pi 60, 80, 100, 120, 180 and 400 GeV

Rigidity = momentum / charge

Tracker: Charge measurement

TRD: Transition radiation detector

AMS-02 Transition Radiation Detector

Misidentifies only 1 in 10000 protons as a positron.

TOF: Time-of-Flight system

Measures velocity and charge:

ECAL: Electromagnetic calorimeter

Precision, 3-D measurement of the directions and energies of light rays and electrons up to 1 TeV.

50,000 fibers, $\phi = 1 \text{ mm}$ distributed uniformly inside 600 kg of lead

Total: 17 X₀

RICH: Ring-imaging Cherenkov counter

Use rare nuclear interaction events to optimize the material description in the Monte Carlo

X-Ray of AMS on the ISS from rare nuclear interaction events

The gray scale is proportional to the number of vertices found.

Positron fraction analysis: update 5 years data ⇔ ~85 109 cosmic rays

Momentum (GeV/c)

In our data sample we identify four components using an ECAL Estimator and a TRD Estimator.

TRD Estimator shows clear separation between positrons and protons with a small charge confusion background

Energy range 206-260 GeV

Compared to our publication in 2014 the energy range has been increased up to 700 GeV and the statistics has been increased from 11 Million e[±] to 20 Million e[±].

- Electrons and positrons have a different origin.
- ➤ A "Standard Model" to describe all our data does not exist.
- Therefore we have to use simple phenomenological models.

Simple phenomenological model for AMS electrons, positrons

$$\begin{split} \Phi_+(E) &= \underbrace{(E^2/\hat{E}^2)(C_+(\hat{E}/E_0)^{-\gamma_+} + C_S(\hat{E}/E_1)^{-\gamma_S} \exp(-\lambda_S \hat{E}))}_{\Phi_-(E)} \\ \Phi_-(E) &= \underbrace{(E^2/\hat{E}^2)(C_-(\hat{E}/E_0)^{-\gamma_-}(1+(\hat{E}/E_B)^{\Delta\gamma_-/b})^b + C_S(\hat{E}/E_1)^{-\gamma_S} \exp(-\lambda_S \hat{E}))}_{\text{solar modulation: } \hat{E} = E + \varphi_\pm} \\ \end{split} \text{"diffuse" term common "source" term}$$

The electron flux

- has no sharp structures and is dominated by the diffuse term,
- is consistent with a charge-symmetric source term.

- has no sharp structures,
- is dominated by the source term.

The significance for the cutoff is 3σ with the data up to 2016.

The significance of the energy cutoff of the source term will have increased to $>5\sigma$ in 2024.

Fluxes of protons, positrons, and electrons show a characteristic time dependence below ~20 GeV.

AMS electron flux: June 2011 – May 2016

Cosmic rays interact with the heliosphere, which evolves with time.

Solar modulation

AMS ISS Data: Jun 2011 - May 2016

Positrons and electrons reveal charge-sign dependent solar modulation.

Complex structure of the solar magnetic field causes chargedependent modulation effects.

AMS ISS Data: Jun 2011 – May 2016

The e⁺/p ratio does not show large variations as a function of time.

The full power of the high precision AMS data sets can only be explored after time-dependent effects are extracted and the data can be used to constrain the local interstellar spectra.

Multiple measurements of charge

Tracker resolution

Protons:

- Resolution function from MC simulation
- Verified with:
 - 400 GeV/c Test Beams data
 - ISS data: tracker residuals, rigidity reconstruction (L1-L8) vs. (L2-L9)

Helium:

- Resolution function from MC simulation
- Verified with ISS data:
 - Tracker residuals
 - Rigidity reconstruction (L1-L8) vs. (L2-L9)

8

Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

It was expected that the proton spectrum could be described by a simple power law with spectral index $\gamma = -2.7$

Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station

50 million helium nuclei

It was expected that the helium spectrum could be described by a simple power law with spectral index $\gamma = -2.7$

The AMS proton/helium flux ratio

Flux ratios: boron/carbon and cosmic-ray propagation

The boron-to-carbon ratio (B/C) is important in the determination of cosmic-ray propagation. Boron is assumed to be produced in the collision of primary cosmic rays, such as carbon, with the interstellar medium (ISM), hence the B/C ratio provides information on cosmic-ray propagation.

B/C ratio measured by AMS

Theoretical models to explain the AMS positron fraction. Among the 100's of models there are three classes:

- a) dark matter
- b) new forms of propagation
- c) pulsars.

b) An example of new propagation:

B/C ratio measured by AMS

Antiproton analysis

6.5 · 10¹⁰ cosmic rays

3.49 · 10⁵ antiprotons

2.42 · 109 protons

3. RICH measures velocity,

1. TRD (transition radiation) to separate e[±] from p[±]

2. Tracker measures momentum and separates + from -

AMS results on the pp/p flux ratio

Unexpected Result Flux Ratio of Elementary Particles p/p is energy independent above 60 GeV

AMS p/p results and modeling

Flux Ratios p/e+ and p/e+ are also energy independent in the interval 60-450 GV

Flux Ratios p/e and p/e are not energy independent in the interval 60-450 GV

As expected: significant energy losses of e⁻ due to synchrotron radiation

Summary: AMS results on fluxes of elementary particles

Summary

- Proton and helium show power-law fluxes for E > ~30 GeV.
- Both have a spectral break at E~300 GeV, and p/He is not constant.
- Strong constraints on models for cosmic-ray propagation from B/C data.
- Electron flux is smaller and significantly softer than the proton flux.
- Evidence for charge-sign dependent solar modulation.
- Above E~30 GeV, antiprotons and positrons approximately exhibit powerlaw behaviour. Intriguingly,

$$\gamma_{e^{+}} \simeq \gamma_{\overline{p}} \approx \gamma_{p} + \frac{\Delta \gamma_{p}}{2}$$

$$\frac{\phi_{e^{+}}(E)}{\phi_{\overline{p}}(E)} \bigg|_{E \in [30.350] \text{ GeV}} \simeq (2.04 \pm 0.04) \times \left(\frac{E}{50 \text{ GeV}}\right)^{0.015 \pm 0.045}$$

According to Lipari (2016), expected antiproton-to-positron ratio for common origin in secondary production is 1.8 ± 0.5 .