

Challenging the Standard Model with LHCb data

Johannes Albrecht 25. & 26. October 2016

technische universität dortmund

• High energy:

"real" new particles can be produced and discovered via their decays

- Discovery of the Higgs boson at the LHC \rightarrow completion of the SM
- Tested scale : <10TeV</p>
- High precision:
 "virtual" new particles can be seen in quantum loops
 - Higher mass scale reachable (up to ~100TeV)

Direct and indirect searches are both needed, both equally important, and complement each other

Searches for New Physics in Flavour

Flavour physics: Search for new heavy particles in precision measurements of quantum effects

Searches for New Physics in Flavour

Precision data is sensitive to new particles of masses up to ~100TeV

[A. Buras et al, JHEP1411(2014)121]

5/50

GIM Mechanism (1970)

Observed branching ratio $K^0 \rightarrow \mu\mu$

$$\frac{BR(K_L \to \mu^+ \mu^-)}{BR(K_L \to all)} = (7.2 \pm 0.5) \cdot 10^{-9}$$

In contradiction with theoretical expectation in the 3-Quark Model

 $M \sim \sin \theta_c \cos \theta_c$

GIM Mechanism (1970)

Observed branching ratio $K^0 \rightarrow \mu\mu$

$$\frac{BR(K_L \to \mu^+ \mu^-)}{BR(K_L \to all)} = (7.2 \pm 0.5) \cdot 10^{-9}$$

In contradiction with theoretical expectation in the 3-Quark Model

Glashow, Iliopolus, Maiani (1970):

Prediction of a 2nd up-type quark, additional Feynman graph cancels the "u box graph".

 $M \sim \sin \theta_c \cos \theta_c$

 $M \sim -\sin \theta_c \cos \theta_c$

- The way to the top quark
 - 1972 Kobayashi & Maskawa: expect third generation (

- 1977 Fermilab discovers b-quark \rightarrow expect top as partner
- 1987 Argus: B-mixing implies $m_t > 50 \text{ GeV}$
- − before the top quark was discovered (< 1995): indirect mass determination \rightarrow m_t = 178 ±8 ⁺¹⁷₋₂₀ GeV

- The way to the top quark
 - 1972 Kobayashi & Maskawa: expect third generation
 - 1977 Fermilab discovers b-quark -> expect top as partner
 - 1987 Argus: B-mixing implies m_t > 50 GeV
 - before the top quark was discovered (< 1995): indirect mass determination → m_t = 178 ±8 ⁺¹⁷₋₂₀ GeV
 - Top discovery Fermilab
 1995: m_t = 180 ±12 GeV
 - Today:
 m_t = 173.2±0.8 GeV
 [PDG16]

- The way to the Higgs Boson:
 - You know all the details!

Beauty quarks: ideal for precision studies

- The beauty quark ...
 - − Is the heaviest quark that forms hadronic bound states
 → high mass: many accessible final states
 - Must decay outside the 3rd family
 - All decays are CKM suppressed
 - Long lifetime (~1.6ps)
- Beauty-decays:
 - Dominant decay process: "tree"
 b→c transition
 - − Very suppressed "tree" $b \rightarrow u$ transition
 - − FCNC "penguin" b-> s and b→ d transitions
 - Flavour oscillations (b \rightarrow t "box" diagrams)
 - CP violation

Focus of todays seminar

B–Physics Around the World

25. & 26. Oktober 2016

Johannes Albrecht

12/50

інсь

Large Hadron Collider

ALICE

ATLAS

1e

Johannes Albrecht

RWTH Aachen TU Dortmund Uni Heidelberg MPI Heidelberg Uni Rostock CMS

LHCb and beauty production

- Proton collisions at 7-13TeV: huge heavy flavour production cross sections
 - In LHCb acceptance: 75kHz bb and 1.5MHz cc
 - $\sim 1/10$ events contains b or c signal

Experiment	∫ ℒ dt [fb⁻¹]	σ_{beauty} [μ b]	End of life
BaBar	530 (total)	0.001 [e ⁺ e ⁻ at Y(4S)]	2008
Belle	1040 (total)	0.001 [e ⁺ e ⁻ at Y(4S)]	2010
CDF/D0	12 (total)	100 [pp at 2 TeV]	2011
ATLAS/CMS	55 (so far)	250-500 [pp at 7-13 TeV]	> 2030
LHCb*	>5 (so far)	250-500 [pp at 7-13 TeV]	> 2030

LHCb Integrated Luminosity in pp collisions 2010-2016

• A few selected highlights

B_s mixing and CP violation

$$i\frac{d}{dt}\begin{pmatrix}B_{s}^{0}\\\bar{B}_{s}^{0}\end{pmatrix} = \begin{pmatrix}\mathbf{M}+i\frac{\mathbf{\Gamma}}{2}\end{pmatrix}\begin{pmatrix}B_{s}^{0}\\\bar{B}_{s}^{0}\end{pmatrix}$$

Flavor states B_s & B_s ≠ mass states B_H & B_L

Observables:

 Δm_s = Mixing frequency

 $\Delta\Gamma_{s}$ = Decay width (lifetime) difference between B_H and B_L

 ϕ_s = Phase: $A_{mix} = |A_{mix}| e^{-i\phi s} \rightarrow \mathcal{E}P$

Measurement of B_s mixing

 $\Delta m_s = 17.768 \pm 0.023^{stat} \pm 0.006^{syst} \, ps^{-1}$

Standard Model: $\Delta m_s = 17.3 \pm 1.5$ (U. Nierste, 2012)

- Measure CP violating phase in $B_s \rightarrow J/\psi \phi$ decays
- Standard Model prediction:

 $\phi_{s} = -0.036 \pm 0.003$

 \rightarrow basically a NULL test

 $\phi_{\rm s} = 0.010 \pm 0.039$ PRL 114 (2015) 041801

Still room for new physics

NEW: CPV with Baryons

CP violation in baryons has never been observed In the lab, although the universe manifests it very clearly - we are made of protons, not antiprotons !

Search for *CP*-violating asymmetries in decay angle distributions of final state.

Study asymmetry in different configurations of final-state distribution (*e.g.* different bins of an angle between two decay planes)

Not compatible with horizontal line at 0 First ever evidence for *CP* violation in baryons; run-2 data can provide a clear discovery !

arXiv:1609.05216, submitted to Nature Physics

25. & 26. Oktober 2016

Johannes Albrecht

CP Violation in charm

LHCb has much larger samples in charm decays to charged tracks than any previous facility (and its supremacy here will remain unchallenged by Belle II).

A key task is the search for indirect *CP*-violation in charm, so far undiscovered and predicted to be tiny in the SM. Look for time-dependent CP asymmetry, expressed in A_{Γ} parameter, in decay to *CP* eigenstate, such as $D^0 \rightarrow KK$ or $\pi\pi$.

Results split by different years and magnet polarities (up, down)

$b \rightarrow s \ \mu^+\mu^-$ base diagram

$b \rightarrow s \ \mu^+\mu^-$ base diagram

- Purely leptonic
 - "add nothing"
- Semileptonic
 - add d quark as spectator $\rightarrow B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - add s quark as spectator $\rightarrow B_s \rightarrow \phi \mu^+ \mu^-$
 - add u quark as spectator $\rightarrow B^+ \rightarrow K^+ \mu^+ \mu^-$
- Ratios:
 - Compare muons to electrons

Theory prediction: Standard Model

decay	SM	
$B_s \rightarrow \mu^+ \mu^-$	3.5±0.3 x 10 ⁻⁹	
$B^0 \rightarrow \mu^+ \mu^-$	1.1±0.1 x 10 ⁻¹⁰	

SM: Buras, Isidori et al: arXiv:1208.0934 Mixing effects: Fleischer et al, arXiv:1204.1737

Left handed couplings → helicity suppressed

Discovery channel for New Phenomena

→ Very sensitive to an extended scalar sector (e.g. extended Higgs sectors, SUSY, etc.)

New results for $B \rightarrow \mu^+ \mu^-$

LHCh

- Nov 2012: LHCb found the first evidence for $B_s \rightarrow \mu^+\mu^-$ using 2.1fb⁻¹
- Update: full dataset: 3fb⁻¹
 - Improved BDT
 - Expected sensitivity: 5.0σ

- Update to 25fb⁻¹
 - Cut based → BDT based

- Improved variables
- Expected sensitivity: 4.8σ

LETTER First observation of $B_s \rightarrow \mu^+ \mu^-$

doi:10.1038/nature14474

OPEN

$$\mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = 2.8^{+0.7}_{-0.6} \cdot 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.9^{+1.6}_{-1.4} \cdot 10^{-10}$$

6.2 σ significance \rightarrow first observation

- compatible with SM at 1.2σ
- 3.0 σ significance \rightarrow first evidence
- compatible with SM at 2.2σ

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Observables depend on $B \rightarrow K^*$ form factors and on short distance physics

25. & 26. Oktober 2016

Johannes Albrecht

Angular analysis of $B^0 \rightarrow K^{*0} \,\mu^+\mu^-$

- LHCb published the first full angular analysis of the decay
 - Unbinned maximum likelihood fit to $K\pi\mu\mu$ mass and three decay angles
 - Simultaneously fit $K\pi$ mass to constrain s-wave configuration
 - Efficiency modelled in four dimensions

JHEP02(2016)104

Johannes Albrecht

Results

References: LHCb [JHEP 02 (2016) 104] , CMS [PLB 753 (2016) 424] BaBar [arXiv:1508.07960] CDF [PRL 108 (2012) 081807] Belle [PRL 103 (2009) 171801].

Results

References: LHCb [JHEP 02 (2016) 104] , CMS [PLB 753 (2016) 424] BaBar [arXiv:1508.07960] CDF [PRL 108 (2012) 081807] Belle [PRL 103 (2009) 171801].

Puzzling deviations: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

• 2013, LHCb has observed a deviation in angular observables in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays

LHCb, Phys.Rev.Lett. 111 (2013) 191801

Puzzling deviations: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

• 2013, LHCb has observed a deviation in angular observables in $B^0 \to K^{*0} \, \mu^+ \mu^-$ decays

LHCb, Phys.Rev.Lett. 111 (2013) 191801

- Full Run 1 analysis confirms effect
- If real, expect discrepancies in other $\mathbf{b} \rightarrow \mathbf{s}$ decays ...

- Analysis of large class of $b \rightarrow s \ \mu^+\mu^-$ decays
 - Several tensions seen, but individual significance is moderate
 - → Perform global analysis ... later

SM predictions based on [Altmannshofer & Straub, arXiv:1411.3161] [LCSR form-factors from Bharucha et al. arXiv:1503.05534] [Lattice prediction from Horgan et al. arXiv:1310.3722]

In the SM, leptons couple universal to W[±] and Z⁰
 → test this in ratios of semileptonic decays

Ratios differ from unity only by phase space
 → hadronic uncertainties cancel in the ratio

LFU: electron vs. muon (R_k)

LHCb measures with 3fb⁻¹

$$R_{K} = \frac{BR(B^{+} \to K^{+}\mu^{+}\mu^{-})}{BR(B^{+} \to K^{+}e^{+}e^{-})} = 0.745 \quad +0.090 \quad (stat) \pm 0.036(syst)$$

(SM: R_k =1.0, consistent at 2.6 σ)

25. & 26. Oktober 2016

Johannes Albrecht

R(D) and R(D*)

• Combination is 3.9σ from the SM expectation:

 $R(D) = 0.297 \pm 0.017$, $R(D^*) = 0.252 \pm 0.003$

[Kamenik et al. Phys. Rev. D78 014003 (2008), S. Jajfer et al. Phys. Rev. D85 094025 (2012)]

[3.9 σ do not include newest Belle measurement]

25. & 26. Oktober 2016

Johannes Albrecht

25. & 26. Oktober 2016

Johannes Albrecht

41/50

Observed tensions

Johannes Albrecht

Observed tensions

Results consistent (significance of 4-5 σ): Reduce strength of left handed EW penguin processes by ~25%

Current Flavour data hints at new particles

[I stopped collecting references in summer, apologies if I missed yours]

The coming years of LHCb running, together with inputs from the Belle2 experiment, will illuminate if we see fluctuations or exciting hints of something new

Heavy Flavour Future

at Main

Heavy quark flavour physics experiments

BABAR

Our knowledge of flavour physics has advanced spectacularly thanks to LHCb. Maintaining this rate of progress beyond run 2 requires significant changes.

The LHCb Upgrade

1) Full software trigger

- Allows effective operation at higher luminosity
- Improved efficiency in hadronic modes

2) Raise operational luminosity to 2 x 10³³ cm⁻² s⁻¹

Necessitates redesign of several sub-detectors & overhaul of readout

Huge increase in precision, in many cases to the theoretical limit, and the ability to perform studies *beyond the reach of the current detector*.

Flexible trigger and unique acceptance also opens up opportunities in other topics apart from flavour ('a general purpose detector in the forward region')

LHCb upgrade scheme

- 40 MHz readout \rightarrow replace sub-systems with embedded front-end electronics
- 5 × higher luminosity → adapt detector technology where needed to maintain excellent performance

31. August 2016

Johannes Albrecht

LHCb upgrade DAQ

- Detector readout and trigger at 40 MHz + higher rate to storage will be the drivers to handle 5x luminosity and collect larger samples
- Based on new front-end electronics, large PC-based event-builder network, and large expansion of online CPU farm
- Real-time data calibration and reconstruction

• $B \rightarrow K^* vv, B \rightarrow vv$

- The Standard Model is tested in a variety of channels

 → many measurements consistent with predictions
 → significant deviations in of b → s ℓ⁺ℓ⁻ channels
 → need for data to conclude
- Interesting flavour data coming soon
 - LHCb Run 2 \rightarrow tripling the dataset (~factor 2 already!)
 - LHCb Upgrade record data with "Trigger-less Readout"
 - Belle2 in the stating blocks

The current long-term schedule of LHC looks like this:

- HL-LHC funded until 2035!
- Thinking now underway for evolution beyond the current upgrade:
 - Consolidation activities and modest improvements during LS3 ('Phase 1b')
 - Longer term luminosity upgrade, probably in LS4 ('Phase 2')

	Integrated luminosity			
	LHCb	GPD		
Run 1	3	25		
Run 2	10	100		
Run 3	25	300		
Run 4	50	+300/a		
Run 5	300			

	Observable	Current	LHCb	Upgrade	Theory
		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s o \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s o K^{*0} \bar{K^{*0}})$	-	0.07	0.02	< 0.02
	$S(B^0 ightarrow \phi K^0_S)$	0.17	0.15	0.03	0.02
B_s mixing	$2\beta_s \ (B_s o J/\psi \phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s o \phi \gamma)$	-	0.07	0.02	< 0.01
currents	${\cal A}^{\Delta\Gamma_s}(B_s o \phi\gamma)$	-	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	${\cal B}(B_s o \mu^+ \mu^-)$	-	30%	8%	< 10%
$\operatorname{penguin}$	$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)}$	-	-	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$eta \; (B^0 o J/\psi K^0)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	$2.5 imes 10^{-3}$	2×10^{-4}	$4 imes 10^{-5}$	-
CPV	$A_{CP}^{dir}(KK) - A_{CP}^{dir}(\pi\pi)$	$4.3 imes 10^{-3}$	4×10^{-4}	$8 imes 10^{-5}$	-

$b \to s \; \ell^+ \ell^{\scriptscriptstyle -}$ as test bench for high scales

- $b \rightarrow s \ell^+ \ell^-$ decays allow precise tests of Lorentz structure
 - Sensitive to new phenomena via non-standard couplings
 - Best described with effective field theory, allows to extract potential New Physics amplitudes

$$H_{eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i} \left[\underbrace{C_{i}(\mu)O_{i}(\mu)}_{\text{left-handed part}} + \underbrace{C_{i}'(\mu)O_{i}'(\mu)}_{\text{right-handed part}} \right] \overset{i=1,2}{\underset{i=3-6,8}{\text{Gluon penguin}}} \overset{i=1,2}{\underset{i=3-6,8}{\text{Gluo$$

- Menu for this talk:
 - Purely leptonic decays: $B_s \rightarrow \mu^+ \mu^-$

 \rightarrow sensitive to C_{S,P} and C₁₀

– Recent measurements of $b \to s \; \ell^+ \ell^{\scriptscriptstyle -},$ dominantly $B^0 \to K^* \; \mu^+ \mu^{\scriptscriptstyle -}$

 \rightarrow sensitive to C_{7,9} and C₁₀

- Lepton flavour universality

 \rightarrow sensitive to C^e vs C^µ

- Global fit to all $b \rightarrow s$ data prefers a deviation from the Standard Model in a vector-like interaction
- Interpretation:
 - "clearly New Physics", or ..
 - Not well understood QCD contribution

→ Understanding needs more data and theoretical work

Experimental overview of $b \rightarrow s$ (d) $\ell^+ \ell^-$

- FCNC decays $b \rightarrow s$ (d) $\ell^+ \ell^-$: large variety of final states •
 - Allows detailed test of the structure of the underlying interaction
 - Effects in one decay can be cross checked in others

# of events	BaBar 433fb ⁻¹	Belle 605fb ⁻¹	CDF 9.6fb ⁻¹	LHCb 1 / 3 fb ⁻¹	ATLAS 5fb ⁻¹	CMS 5fb ⁻¹
$\mathrm{B}^{0} \to \mathrm{K}^{*0} \ell^{+} \ell^{-}$	137±44*	247±54*	288±20	2361±56	466±34	415±29
$\mathrm{B}^{+} \longrightarrow \mathrm{K}^{*+} \ell^{+} \ell^{-}$			24±6	162±16		
$\mathrm{B}^+ \longrightarrow \mathrm{K}^+ \ell^+ \ell^-$	153±41*	162±38*	319±23	4746±81		
$\mathrm{B}^0 \to \mathrm{K}^0_{\ \mathrm{s}} \ell^+ \ell^-$			32±8	176±17		
$\mathrm{B}_{\mathrm{s}} \to \phi \; \ell^+ \ell^-$			62±9	174±15		
$\Lambda_b {\longrightarrow} \Lambda \ell^+ \ell^-$			51±7	78±12		
$B^+ \longrightarrow \pi^+ \ell^+ \ell^-$		limit		25±7		
Babar arXiv:1204.3933ATLAS (preliminary)LHCbBelle arXiv:0904.0770[ATLAS-CONF-2013-038]arxiv:1403.8044CDF arXiv:1107.3753 + 1108.0695CMS (preliminary)arxiv:1403.8044+ ICHEP 2012CMS (preliminary)arxiv:1403.8044+ JHEP12(2012)125cother experiments: $\ell = \mu$ only				B [±] and $\ell = e, \mu$ nts: $\ell = \mu$ only		
25. & 26. Oktober 2016 Johannes Albrecht 50				56/50		

tul

CP violation in B_s - \overline{B}_s mixing

 CP violation in neutral B-meson mixing manifests itself if

$$\mathcal{P}(B_q \to \bar{B}_q) \neq \mathcal{P}(\bar{B}_q \to B_q)$$

- Interest triggered by a measurement from D0 yielding an anomalous likesign dimuon asymmetry
 - PRD 89 (2014) 012002
- Precise measurements of semileptonic asymmetries from LHCb do not confirm the anomaly
- Latest measurement of $a_{sl}(B_s)$ using $B_s \rightarrow D_s(KK\pi)\mu\nu X$ decays

Note: $a_{sl}(B_d)$ and $a_{sl}(B_s)$ are very small in the SM $a_{sl}^s = (2.22 \pm 0.27) \times 10^{-5}$ for B_s^0 $a_{sl}^d = (-4.7 \pm 0.6) \times 10^{-4}$ for B^0 Artuso, Borissov, Lenz [arXiv:1511.09466]

PRL 117 (2016) 061803

 $a_{\rm sl}^s = (0.39 \pm 0.26({\rm stat}) \pm 0.20({\rm syst}))\%$

Johannes Albrecht

9

Gemeinde Zeuthen Wald. Wasser. Leben.

Challenging the Standard Model with LHCb data

Johannes Albrecht 25. & 26. October 2016

technische universität dortmund

