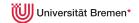
Gravity subject to closer scrutiny: New experimental tests


Claus Lämmerzahl

May 3, 2016

DESY Colloquium

Hamburg, 3 May 2016 - Zeuthen 4 May 2016

General Relativity

- ▶ The geometrical structure
- ▶ The gravitational field equations

General Relativity

- ► The geometrical structure
- ▶ The gravitational field equations

Consequences and tests

- Weak field consequences
- ► The strong gravity regime
- ► Further consequences

General Relativity

- ► The geometrical structure
- ▶ The gravitational field equations

Consequences and tests

- Weak field consequences
- ► The strong gravity regime
- ► Further consequences

Big open questions

General Relativity

- The geometrical structure
- ► The gravitational field equations

Consequences and tests

- Weak field consequences
- ► The strong gravity regime
- ► Further consequences

Big open questions

New tests

- ► MICROSCOPE: Universality of Free Fall
- ▶ Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- ► Galileo: Gravitational redshift
- ▶ The gravitational constant

General Relativity

- The geometrical structure
- ► The gravitational field equations

Consequences and tests

- Weak field consequences
- ► The strong gravity regime
- ► Further consequences

Big open questions

New tests

- ► MICROSCOPE: Universality of Free Fall
- ▶ Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- Galileo: Gravitational redshift
- ► The gravitational constant

Summary and outlook

General Relativity

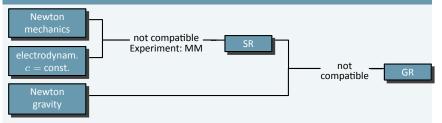
- ▶ The geometrical structure
- ► The gravitational field equations

Consequences and tests

- ► Weak field consequences
- ▶ The strong gravity regime
- ► Further consequences

Big open questions

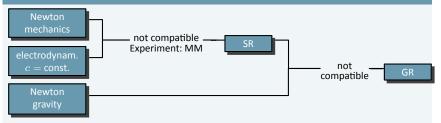
New tests


- ► MICROSCOPE: Universality of Free Fall
- Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- ► Galileo: Gravitational redshift
- ► The gravitational constant

Summary and outlook

On the development of General Relativity

Historical embedding / development of relativistic theories


Meaning of GR

- very small effects on Solar system scale: perihelion shift, light deflection, redshift, gravitational time delay, Schiff effect, Lense-Thirring effect, ...
- ▶ if one takes serious the equation for GR: Black Holes now convincing evidence for their existence → triumph of theory !!!
- ▶ then perhaps also time travel, worm holes, ... ?

On the development of General Relativity

Historical embedding / development of relativistic theories

Meaning of GR

- very small effects on Solar system scale: perihelion shift, light deflection, redshift, gravitational time delay, Schiff effect, Lense-Thirring effect, ...
- ▶ if one takes serious the equation for GR: Black Holes now convincing evidence for their existence → triumph of theory !!!
- ▶ then perhaps also time travel, worm holes, ... ?

General Relativity

- The geometrical structure
- ▶ The gravitational field equations

Consequences and tests

- Weak field consequences
- ▶ The strong gravity regime
- ► Further consequences

Big open questions

New tests

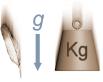
- ► MICROSCOPE: Universality of Free Fall
- Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- ▶ Galileo: Gravitational redshift
- ► The gravitational constant

Summary and outlook

Basic principles of gravity (Ehlers, Pirani, Schild 1972; Will 1993)

► Conformal structure behavior of light rays → metric structure, locally Special Relativity

 $c = const \\ \mbox{Minkowski metric } \eta_{ab} \\ \mbox{many tests } 10^{-15} - 10^{-30} \\ \mbox{}$



Basic principles of gravity (Ehlers, Pirani, Schild 1972; Will 1993)

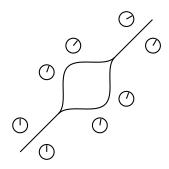
- ► Conformal structure behavior of light rays → metric structure, locally Special Relativity
- **▶** Universality of Free Fall

there exists a coordinate system so that for all particles

$$\frac{d^2x^{\mu}}{dt^2} \stackrel{*}{=} 0$$

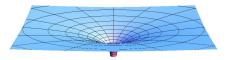
- bulk matter, Schlamminger et al, 2003: $\eta \le 10^{-13}$, MICROSCOPE $\eta \le 10^{-15}$
- spin matter
- charged matter
- anti-matter

Basic principles of gravity (Ehlers, Pirani, Schild 1972; Will 1993)


- Conformal structure behavior of light rays \rightarrow metric structure, locally Special Relativity
- Universality of Free Fall
- Compatibility no superluminal velocity

Basic principles of gravity (Ehlers, Pirani, Schild 1972; Will 1993)

- Conformal structure behavior of light rays → metric structure, locally Special Relativity
- **▶** Universality of Free Fall
- Compatibility no superluminal velocity
- Uniqueness of time-keeping or uniqueness of quantum mechanics or Local Position Invariance

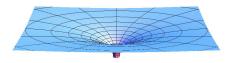


clocks may show different time (twin paradox), but same ticking rates required

many different clock tests $\alpha \le 10^{-4}$ anti clocks, Galileo

Basic principles of gravity (Ehlers, Pirani, Schild 1972; Will 1993)

- ► Conformal structure behavior of light rays → metric structure, locally Special Relativity
- **▶** Universality of Free Fall
- Compatibility no superluminal velocity
- Uniqueness of time-keeping or uniqueness of quantum mechanics or Local Position Invariance



Einstein Equivalence Principle

Basic principles of gravity (Ehlers, Pirani, Schild 1972; Will 1993)

- ► Conformal structure behavior of light rays → metric structure, locally Special Relativity
- **▶** Universality of Free Fall
- Compatibility no superluminal velocity
- Uniqueness of time-keeping or uniqueness of quantum mechanics or Local Position Invariance

Einstein Equivalence Principle

Result: Gravity can be described by a pseudo-Riemannian manifold $g_{\mu \nu}$

applies also to fields: Maxwell, Dirac, ...

General Relativity

- The geometrical structure
- ► The gravitational field equations

Consequences and tests

- ► Weak field consequences
- ▶ The strong gravity regime
- ► Further consequences

Big open questions

New tests

- ► MICROSCOPE: Universality of Free Fall
- Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- Galileo: Gravitational redshift
- ▶ The gravitational constant

Summary and outlook

The field equations

- There is no unique physical way to derive the Einstein field equations
- ➤ Attempts: PPN formalism still loopholes: torsion, Finsler geometry, non-Newtonian gravity, anisotropy on the Newtonian level (SME), ...
- ► Guiding principle: action principle

$$S = \int R \sqrt{-g} \, d^4 x + \int \mathcal{L}_{\mathrm{matter}} \, d^4 x$$

variation

$$R_{\mu\nu} - \tfrac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu} \,, \qquad T_{\mu\nu} = \frac{1}{\sqrt{-g}} \frac{\delta \mathcal{L}_{\rm matter}}{\delta g^{\mu\nu}} \label{eq:R_mu}$$

One major consequence: Black Holes

General Relativity

- The geometrical structure
- ► The gravitational field equations

Consequences and tests

- ▶ Weak field consequences
- ▶ The strong gravity regime
- ► Further consequences

Big open questions

New tests

- ► MICROSCOPE: Universality of Free Fall
- ▶ Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- ► Galileo: Gravitational redshift
- ► The gravitational constant

Summary and outlook

Formalism

equation for the gravitational field: Einstein equations

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu}$$

equation of motion of a pointlike particle moving in the gravitational field: geodesic equation

$$0 = \frac{d^2x^{\mu}}{ds^2} + \left\{ \begin{array}{c} \mu \\ \rho \sigma \end{array} \right\} \frac{dx^{\rho}}{ds} \frac{dx^{\sigma}}{ds}$$

 $\{ {}^{\mu}_{\rho\sigma} \}$ is the Christoffel symbol, and $ds=\sqrt{g_{\mu\nu}dx^{\mu}dx^{\nu}}$ extended particles: Mathisson-Papapetrou-Dixon equations

► clock reading = proper time

$$s = \int ds$$

operationally defined through standard clocks (Perlick, GRG 1987), approximately realized by atomic clocks

Tests of consequences

- effect on light rays
 - light deflection (VLBI, Gaia) Eddington
 - ▶ lensing Twin Quasar Q0957+561
 - shadows of black holes (EHT)
- orbital effects
 - perihelion shift (Mercury) Le Verrier
 - Lense-Thirring effect: spin-orbit coupling (LAGEOS) Ciufolini
 - back reaction effects (binary systems) Hulse-Taylor, grav. waves
- effects on extended bodies
 - Schiff effect: spin-spin coupling (GP-B) Everitt
- clock effects / effects on frequency
 - gravitational redshift Pound-Rebka, GP-A
 - gravitational time delay Cassini
- + all special relativistic effects: time dilation, Doppler effect, Sagnac effect, length contraction, aberration, ...

General Relativity

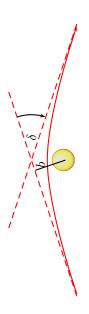
Consequences and tests

- Weak field consequences

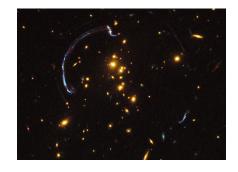
New tests

Summary and outlook

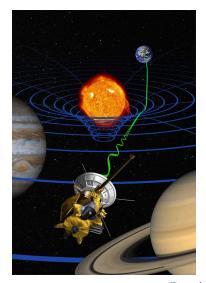
light effects


gravitational redshift Pound & Rebka, GP A

light effects

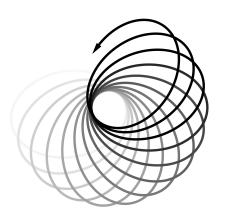

- gravitational redshift Pound & Rebka, GP A
- ▶ light deflection

light effects


- gravitational redshift Pound & Rebka, GP A
- light deflection
 - gravitational lensing

light effects

- gravitational redshift Pound & Rebka, GP A
- light deflection
 - gravitational lensing
- gravitational time delay Cassini



light effects

- gravitational redshift Pound & Rebka, GP A
- light deflection
 - gravitational lensing
- gravitational time delay Cassini

orbital effects for particles

perihelion shift le Verrier

light effects

- gravitational redshift Pound & Rebka, GP A
- light deflection
 - gravitational lensing
- gravitational time delay Cassini

orbital effects for particles

- perihelion shift le Verrier
- ► Lense-Thirring effect Ciufolini et al

light effects

- gravitational redshift Pound & Rebka, GP A
- ▶ light deflection
 - gravitational lensing
- gravitational time delay Cassini

orbital effects for particles

- perihelion shift le Verrier
- Lense-Thirring effect
 Ciufolini et al

extended objects, continua

► Schiff effect
Everitt et al 2012

Mathisson-Papapetrou-Dixon

$$\begin{array}{rcl} D_v p^\mu &=& R^\mu{}_{\nu\rho\sigma} v^\nu S^{\rho\sigma} \\ && + D_\mu R_{\rho\sigma\tau\kappa} J^{\rho\sigma\tau\kappa} \\ D_v S^{\mu\nu} &=& v^\mu p^\nu - v^\nu p^\mu \end{array}$$

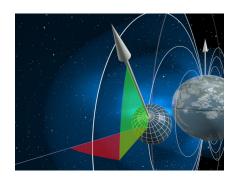
supplementary condition

$$p(S) = 0 \qquad \text{or} \qquad g(S, v) = 0$$

or others

extremely complicated to solve one example Hackmann, C.L., Obukhov, Puetzfeld, Schaffer, PRD 2015

light effects


- gravitational redshift Pound & Rebka, GP A
- light deflection
 - gravitational lensing
- gravitational time delay Cassini

orbital effects for particles

- perihelion shift le Verrier
- Lense-Thirring effect Ciufolini et al

extended objects, continua

Schiff effect Everitt et al 2012

light effects

- gravitational redshift Pound & Rebka, GP A
- light deflection
 - gravitational lensing
- gravitational time delay Cassini

orbital effects for particles

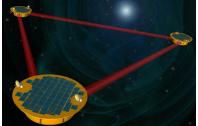
- perihelion shift le Verrier
- Lense-Thirring effect
 Ciufolini et al

extended objects, continua

Schiff effect Everitt et al 2012 all tests are confirming GR to the order of $10^{-4}-10^{-5}$

General Relativity

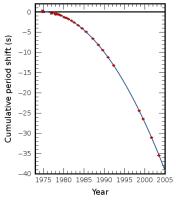
Consequences and tests


- ▶ The strong gravity regime

New tests

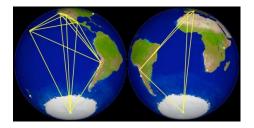
Summary and outlook

 gravitational wave interferometers or PTA: merger of BHs
 gravitational wave detection



- gravitational wave interferometers or PTA: merger of BHs gravitational wave detection
- backreaction indirect proof of existence of gravitational waves **Hulse & Taylor**

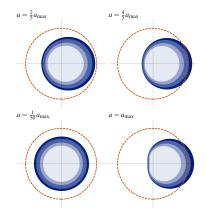
increase of orbiral frequency of binaries


Hulse-Taylor binary

gravitational wave interferometers or PTA: merger of BHs

gravitational wave detection

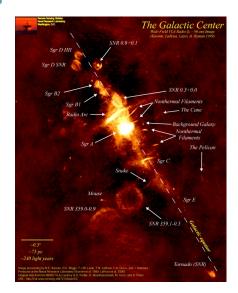
- backreaction indirect proof of existence of gravitational waves Hulse & Taylor
- ▶ EHT observations



gravitational wave interferometers or PTA: merger of BHs

gravitational wave detection

- backreaction indirect proof of existence of gravitational waves Hulse & Taylor
- EHT observations
 - shadow of Black Holes

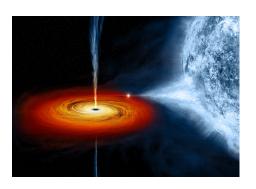


Grenzebach, Perlick, C.L., PRD 2014

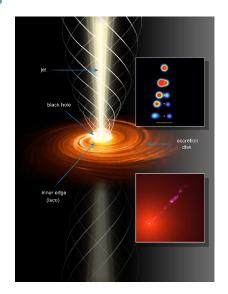
gravitational wave interferometers or PTA: merger of BHs

- backreaction indirect proof of existence of gravitational waves **Hulse & Taylor**
- **EHT observations**
 - shadow of Black Holes
- infrared astronomy

gravitational wave interferometers or PTA: merger of BHs


- backreaction indirect proof of existence of gravitational waves **Hulse & Taylor**
- **FHT** observations
 - shadow of Black Holes
- infrared astronomy
 - orbits around BHs Genzel, Ghez, Eckart

gravitational wave interferometers or PTA: merger of BHs


- backreaction indirect proof of existence of gravitational waves **Hulse & Taylor**
- **FHT** observations
 - shadow of Black Holes
- infrared astronomy
 - orbits around BHs Genzel, Ghez, Eckart
- accretion disks

 gravitational wave interferometers or PTA: merger of BHs

- backreaction indirect proof of existence of gravitational waves Hulse & Taylor
- FHT observations
 - shadow of Black Holes
- infrared astronomy
 - orbits around BHs Genzel, Ghez, Eckart
- accretion disks
- jets

Questions, what can one do with the observations?

spin of Black Holes

in standard theory: maximum spin of Black Hole

$$S_{\rm max} = \frac{GM^2}{c}$$

then spin parameter should obey

$$\chi = \frac{cS}{GM^2} \le 1$$

Questions, what can one do with the observations?

- spin of Black Holes
- no-hair theorem

- ▶ in GR Black Holes are characterized by mass M, spin a, and charge Q only
- violations are possible in generalized theories of gravity

Questions, what can one do with the observations?

- spin of Black Holes
- no-hair theorem
- alternative gravity theories

e.g. Gauss-Bonnet, based on Lagrangian

$$\begin{array}{rcl} L & = & R - \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \alpha e^{-\gamma \phi} R_{\mathrm{GB}} \\ R_{\mathrm{GB}} & = & R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4 R_{\mu\nu} R^{\mu\nu} + R^2 \end{array}$$

 α Gauss-Bonnet, γ dilaton Comparison with Kerr:

- ▶ EGBd BHs have $\chi > 1$
- ▶ EGBd BHs have smaller horizon area than Einstein BHs (except for large J/M^2)
- ► EGBd BHs have larger temperature than Einstein BHs
- ▶ test particles have larger ISCOs
- test particles have smaller orbital frequency

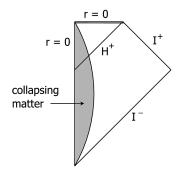
Questions, what can one do with the observations?

- spin of Black Holes
- no-hair theorem
- alternative gravity theories
- alternative matter models
 - Boson stars
 - neutrino balls
 - gravastars
 - Planck stars
 - regular Black Holes, e.g. from nonlinear electrodynamics

Boson stars (Kunz, Kleihaus, List, C.L., Schroven)

$$L=R+\partial_{\mu}\phi\partial^{\mu}\phi+V(\phi)$$

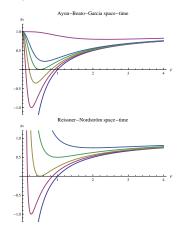
e.g. Ayon-Beato-Garcia regular Black Hole


$$g_{00} = 1 - \frac{2Mr^2}{(r^2 + Q^2)^{\frac{3}{2}}} + \frac{Q^2r^2}{(r^2 + Q^2)^2}$$

explored through geodesics Garcia, Hackmann, Kunz, C.L., Macias 2015

Questions, what can one do with the observations?

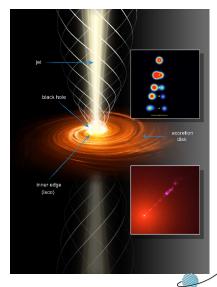
- spin of Black Holes
- no-hair theorem
- alternative gravity theories
- alternative matter models
 - Boson stars
 - neutrino balls
 - gravastars
 - Planck stars
 - regular Black Holes, e.g. from nonlinear electrodynamics
- cosmic censorship



Questions, what can one do with the observations?

- spin of Black Holes
- no-hair theorem
- alternative gravity theories
- alternative matter models
 - Boson stars
 - neutrino balls
 - gravastars
 - Planck stars
 - regular Black Holes, e.g. from nonlinear electrodynamics
- cosmic censorship
- role of singularity (BH without singularity)

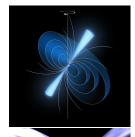
Ayon-Beato & Garcia PRL 1998

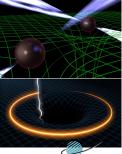


other approach Klinkhamer 2013

Questions, what can one do with the observations?

- spin of Black Holes
- no-hair theorem
- alternative gravity theories
- alternative matter models
 - Boson stars
 - neutrino balls
 - gravastars
 - Planck stars
 - regular Black Holes, e.g. from nonlinear electrodynamics
- cosmic censorship
- role of singularity (BH without singularity)
- Black Holes in nontrivial environment

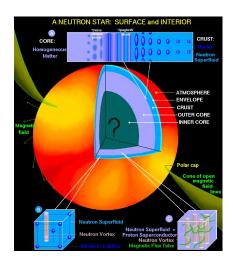

Physics of Neutron Stars


gravitational properties

- gravitational field of a neutron star
- deformation in external gravitational field
- influences motion through Mathisson-Papapetrou-Dixon equations
- influences creation of gravitational waves

properties of neutron stars

- cooling
- maximum mass
- quasi-periodic oscillations
- glitches
- creation of X-ray and Gamma Ray Bursts


Physics of Neutron Stars

all depends on

- structure
- elasticity moduli
- specific heat
- thermal conductivity
- neutrino emissivity
- equation of state

this depends on matter model

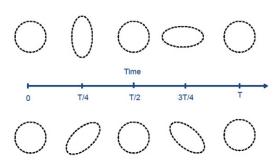
all this can be explored through the motion of the neutron stars and the emitted gravitational waves

Outline

General Relativity

Consequences and tests

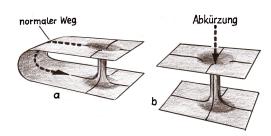
- ► Further consequences


New tests

Summary and outlook

gravitational waves

- from BH-BH binaries (clean test of BH physics)
- from BH-NS binaries (clean test of NS physics)
- ▶ from NS-NS binaries



gravitational waves

- from BH-BH binaries (clean test of BH physics)
- from BH-NS binaries (clean test of NS physics)
- from NS-NS binaries

local solutions

wormholes

gravitational waves

- from BH-BH binaries (clean test of BH physics)
- from BH-NS binaries (clean test of NS physics)
- from NS-NS binaries

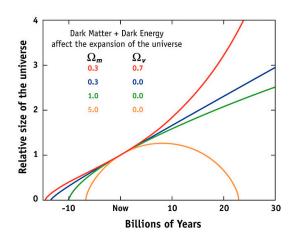
local solutions

wormholes

global solutions

cosmology

gravitational waves


- from BH-BH binaries (clean test of BH physics)
- from BH-NS binaries (clean test of NS physics)
- from NS-NS binaries

local solutions

wormholes

global solutions

- cosmology
- big bang

Outline

General Relativity

- The geometrical structure
- ► The gravitational field equations

Consequences and tests

- ► Weak field consequences
- ► The strong gravity regime
- ► Further consequence

Big open questions

New tests

- ► MICROSCOPE: Universality of Free Fall
- ▶ Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- Galileo: Gravitational redshift
- ▶ The gravitational constant

Summary and outlook

Inconsistencies between GR and quantum mechanics

singularities: general prediction of GR - singularity theorems

- ► GR: pointlike singularities black holes, big bang
- ▶ QM: uncertainty relation forbids point-like phenomena

notion of time

- ▶ QM: time is external parameter
- ► GR: time is dynamical

information paradox

- objects disappear in black hole
- Hawking radiation thermal

zero point energy

- QM: zero point energy (Casimir effect)
- ▶ GR: all sorts of energy are source of the gravitational field
- problem of cosmological constant

structural inconsistency

- GR is local
- QM is global

Inconsistencies between GR and quantum mechanics

singularities: general prediction of GR - singularity theorems

- GR: pointlike singularities black holes, big bang
- QM: uncertainty relation forbids point-like phenomena

notion of time

- ▶ QM: time is external parameter
- ► GR: time is dynamical

information paradox

- objects disappear in black hole
- Hawking radiation thermal

zero point energy

- QM: zero point energy (Casimir effect)
- GR: all sorts of energy are source of the gravitational field
- problem of cosmological constant

structural inconsistency

- GR is local nonlocal generalization? Mashhoon, Hehl
- QM is global

Open problems

general fundamental problems

- quantum to classical transition
- fundamental decoherence, measurement process
- equivalence principle (inertia = weight = gravitating mass)
- constancy of constants

"technical" problems

- renormalization
- self force
- QFT in curved space-time

"smoking guns"

- Dark Matter
- Dark Energy

still to understand completely

- Black Holes
- Neutron stars
- Cosmic rays

Outline

General Relativity

- The geometrical structure
- ► The gravitational field equations

Consequences and tests

- Weak field consequences
- ▶ The strong gravity regime
- ► Further consequences

Big open questions

New tests

- ▶ MICROSCOPE: Universality of Free Fall
- ▶ Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- ► Galileo: Gravitational redshift
- ► The gravitational constant

Summary and outlook

Outline

General Relativity

Consequences and tests

New tests

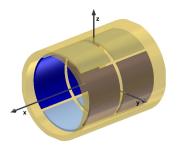
- ▶ MICROSCOPE: Universality of Free Fall

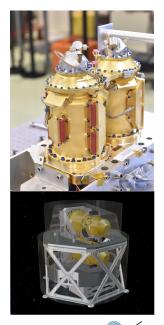
Summary and outlook

MICROSCOPE: The Mission

- French space mission with participation of CNES, ESA, ZARM and PTB
- Mission goal: Test of Equivalence Principle with an accurary of $\eta = 5 \cdot 10^{-16}$
- Mission overview:
 - Micro-satellite of CNES Myriade series
 - Drag-free satellite
 - Sun-synchronous orbit
 - Altitude about 800 km
 - Mission lifetime of 1 year
- Payload:
 - Two high-precision capacitive differential accelerometers
 - Science sensor: Ti and Pt test mass
 - Reference sensor: two Pt test masses
- Test of accelerometers at ZARM drop tower
- modeling

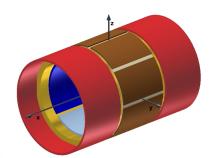
Universality of Free Fall in space

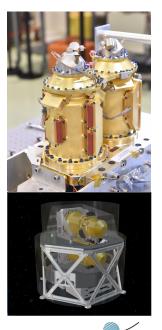

First data evaluation as SWG member


video

Main payload T-SAGE

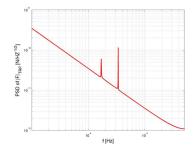
- developed and built by ONERA
- two differential acceleromters, each containing two test masses
- test mass made by PTP
- each test mass is controlled by 18 electroides





Main payload T-SAGE

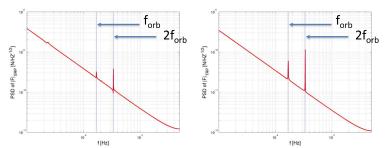
- developed and built by ONERA
- two differential acceleromters, each containing two test masses
- test mass made by PTP
- each test mass is controlled by 18 electroides



Disturbances

- Solar radiation pressure
- thermal radiation pressure

through the rotation the UFF-violating signal can be shifted in frequency space


MICROSCOPE Group:

Stefanie Bremer, Meike List, Benny Rievers, Hanns Selig, C.L.

Disturbances

- Solar radiation pressure
- thermal radiation pressure

through the rotation the UFF-violating signal can be shifted in frequency space

MICROSCOPE Group:

Stefanie Bremer, Meike List, Benny Rievers, Hanns Selig, C.L.

Outline

General Relativity

- ► The geometrical structure
- ► The gravitational field equations

Consequences and tests

- Weak field consequences
- ▶ The strong gravity regime
- ► Further consequences

Big open questions

New tests

- ► MICROSCOPE: Universality of Free Fall
- ▶ Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- Galileo: Gravitational redshift
- ▶ The gravitational constant

Summary and outlook

Theory

Model

Schrödinger equation in gravitational field

$$i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^2}{2m}\Delta\phi+m~U\psi$$

Phase shift

For pure gravitational acceleration

> atom interferom. (Bordé 1989)

$$\delta\phi = \qquad k\cdot g \; T^2$$

neutron interf. (CL, GRG 1996)

$$\delta \phi = C \cdot g \, T^2$$

Discussion

- Exact quantum result
- UFF exactly fulfilled
- ▶ Does not depend on \hbar
- ħ comes in by introducing classical notions

• height =
$$h = v_z T = \frac{\hbar k}{m} T$$

▶ length =
$$l = v_0 T$$

then

$$\delta\phi=k_zgT^2=\frac{mghl}{\hbar v_0}$$

- classical notions are operationally not realized
- $\delta\phi = k_z g T^2 \text{ contains experimentally given quantities given}$

Theory

Model

Schrödinger equation in gravitational field

$$i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^2}{2m_i}\Delta\phi+m_gU\psi$$

Phase shift

For pure gravitational acceleration

> atom interferom. (Bordé 1989)

$$\delta\phi = \frac{m_g}{m_i} \; k \cdot g \; T^2$$

neutron interf. (CL, GRG 1996)

$$\delta\phi = C \cdot a \, T^2$$

Discussion

- Exact quantum result
- UFF exactly fulfilled
- ▶ Does not depend on \hbar
- ħ comes in by introducing classical notions

• height =
$$h=v_zT=\frac{\hbar k}{m}T$$

$$\blacksquare \text{ length} = l = v_0 T$$

then

$$\delta\phi=k_zgT^2=\frac{mghl}{\hbar v_0}$$

- classical notions are operationally not realized
- $\delta\phi = k_z g T^2 \text{ contains experimentally given quantities given}$

QUANTUS facilities

QUANTUS I

4.7 s

QUANTUS II

9.3 s

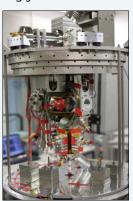
MAIUS

 \sim 5 min

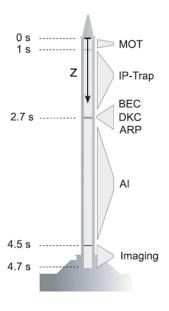
QUANTUS apparatuses

QUANTUS I

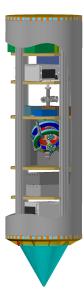
4.7 s

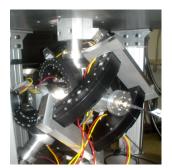

QUANTUS II

9.3 s


MAIUS

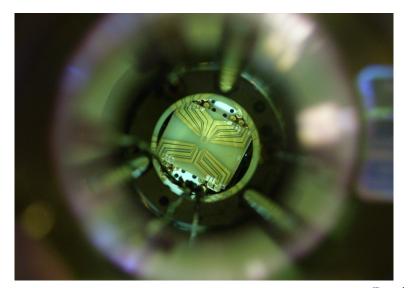
 \sim 5 s


Preparation of BEC in the drop tower


- \triangleright 10⁷ atoms in MOT
- $ightharpoonup 5 \cdot 10^6$ atoms in magnetic trap
- $ightharpoonup \sim 1.5$ s evaporation cooling
- \triangleright 10⁴ atoms in BEC
- ▶ 10 30 Hz trap frequency
- ► T = 9 nK (kinetic energy)
- $\blacktriangleright \ F=2 \text{, } m_F=0 \text{ state}$
- until now more than 450 drops
- DCK = Delta Kick Cooling
- \blacktriangleright ARP = Adiabatic Rapid Passage (transfer from $m_F=2$ to a non-magnetic $m_F=0$ state)

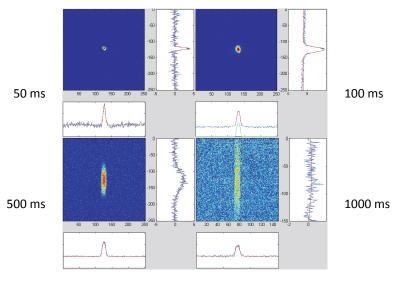
BEC in microgravity

design of capsule


vacuum chamber

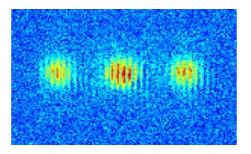
capsule

QUANTUS I: Atom chip technology

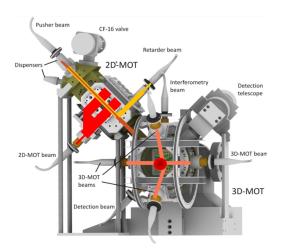

First BEC in microgravity / extended free fall

LU Hannover, ZARM, MPQ Munich, U Hamburg, HU Berlin, U Ulm

BEC in microgravity – long free evolution



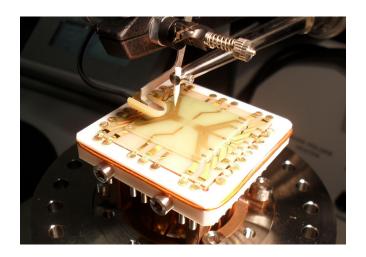
 10^4 atoms, 1 s free evolution time, van Zoest et al, Science 2010


Interference

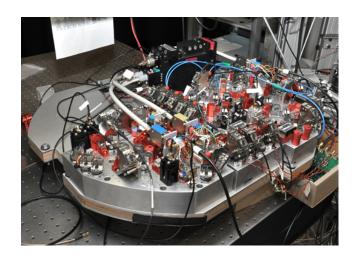
Interference for long time of flight (at the moment > 0.6 s)

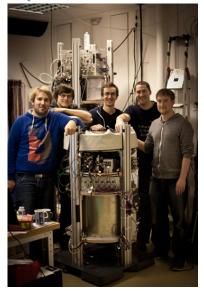
Müntinga et al, PRL 2013

QUANTUS II: further miniaturization


QUANTUS II: further miniaturization

QUANTUS II: further miniaturization


QUANTUS II: further miniaturization — new generation multilayer atomic chip

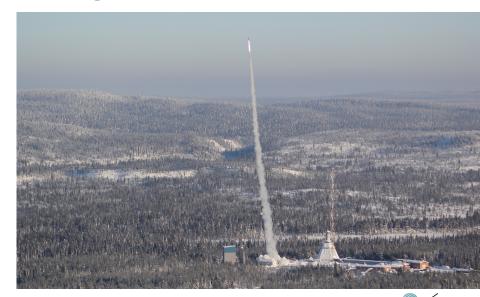

QUANTUS II: further miniaturization — technical scetch

QUANTUS II: further miniaturization — diode laser

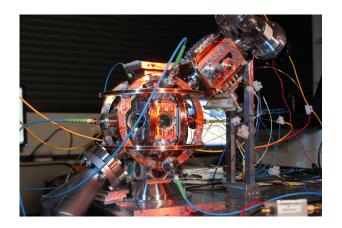
QUANTUS-II = worldwide fastest and largest chip-based BEC



Sounding rocket MAIUS



Sounding rocket MAIUS



The goal: ISS

ZARM

PRIMUS

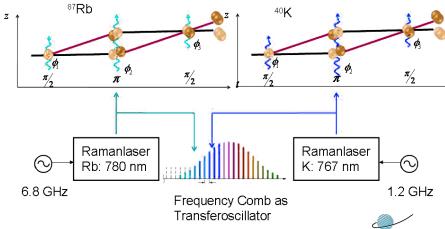
dipole trap (instead of chip)

PRIMUS metrology

- Frequency comb
 - Remote operation via WLAN
 - Battery powered (24V / 8 A)
 - First drop 4.3.2010
- high finesse optical resonators

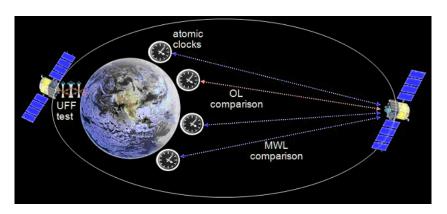
Possible experiments with cold atoms

fundamental research


- test of quantum principles
- quantum tests of gravity
- search for quantum gravity effects
- applications
- geodesy
- inertial sensors

STE-QUEST

53/82


Test des Äquivalenzprinzips mit Atominterferometrie Phasenlink zwischen Laser 2–Spezies Atominterferometer

STE-QUEST

mission scenario

Summary MAQRO

MAQRO = Macroscopic Quantum Resonators

= WAX + DECIDE + CASE

WAX = Wave function Expansion

DECIDE = Decoherence Interference Experiment

CASE = Comparative Acceleration Sensing Experiment

Science cases

WAX: searches for fundamental decoherence by means of wave packet spreading

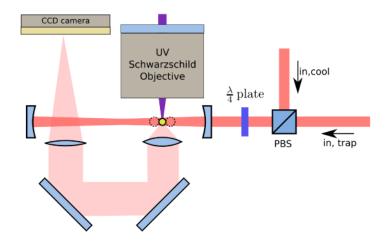
DECIDE: test the predictions of quantum theory for quantum

superpositions of macroscopic objects containing more than

 10^8 atoms

CASE: demonstrate the performance of a novel type of inertial

sensor based on optically trapped microspheres



MAQRO Science cases

- will gravitation lead to modifications of quantum physics for very massive objects?
- are macroscopic quantum superpositions at all possible or are there yet unknown decoherence mechanisms?
- ▶ the short de-Broglie wavelength of massive particles can be used for high sensitivity matter wave interferometry with practical applications

Setup of MAQRO/DECIDE

Outline

General Relativity

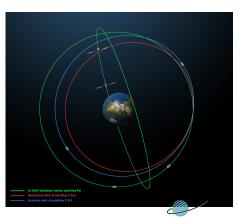
Consequences and tests

New tests

- ► MICROSCOPE: Universality of Free Fall
- ► Galileo: Gravitational redshift

Summary and outlook

Galileo


	after launch	after correction	target orbit
e	0.233	0.1561	\sim 0
a [km]	26,192	27,977	29,900
i	49.774	49.7212	55
$r_a - r_p$ [km]	11,681	8,730	\sim 0

Galileo-group

- Daniela Kunst
- ► Felix Finke
- Meike List
- ▶ Benny Rievers
- Volker Perlick, Sven Herrmann, Dirk Puetzfeld, Eva Hackmann, C.L.

Funding

- RelaGal (DLR)
- ▶ GREAT (ESA)

Galileo clocks and redshift

Galileo clocks

- passive Hydrogen maser PHM and Rubidium clock RAFS
- lacktriangle stabilities: $\sigma_{\rm HM}=3\cdot 10^{-15}$ and $\sigma_{\rm RAFS}=2\cdot 10^{-14}$ at time scale of one orbit

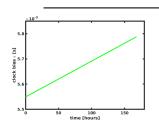
Redshift

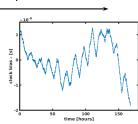
redshift between perigaeum and apogaeum

$$\frac{\Delta \nu}{\nu} = (1+\alpha) \frac{GM}{c^2} \left(\frac{1}{r_{\rm D}} - \frac{1}{r_{\rm a}} \right) \quad \Rightarrow \quad \Delta t = 2(1+\alpha) \frac{\vec{r} \cdot \vec{v}}{c^2}$$

- experimental parameter: α
- with the maximum difference of radius of ~ 8730 km one gets the maximum redshift $\frac{\Delta \nu}{\nu} \approx 5 \cdot 10^{-11}$
- ightharpoonup corresponds to 370 ns time gain per revolution (nominal ~ 0.5 ns)

Clock data

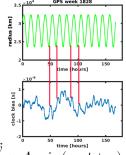

data analysis centers correct the received clock data from G 5 + 6 for

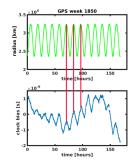

- atmospheric delays
- relativistic delays
- **.**.

unmodeled and sytematic effects remain: clock bias ϵ Pseudo range for measured times

$$\begin{array}{lcl} P_{r,f}^{s}(t) & = & \|\vec{r}_{r}(t) - \vec{r}^{s}(t-T)\| + c\left(\Delta t_{r}(t) - \Delta t^{s}(t-T)\right) \\ & + c\left(d_{r,f}(t) - d_{r}^{s}(t-T)\right) + I_{r,f}^{s} + T_{r,f}^{s} - m_{r,P,f}^{s}(t) + \epsilon_{r,P,f}^{s}(t) \end{array}$$

substract linear and quadratic drift





Analyzation of residual error

- Indication for systematics related to effects induced by the sun
- Apply sophisticated model for solar radiation pressure for orbit propagation
- ► Fit clock residuals to

$$\epsilon = 2 \frac{\vec{r} \cdot \vec{v}}{c^2} \approx A_\alpha \sin{(\omega_{\rm sat} t + \varphi)}$$

where we fix the frequency and the phase shift using information from the orbit products (fit parameter A_{α}). Here $\alpha=\alpha_{\rm grav}+\alpha_{\rm systematic}$

lacktriangledown The values of A_{lpha} will oscillate over one year due to sun induced effects ightarrow statistical analysis will help to reduce the error in the measurement

Outline

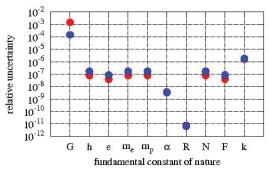
General Relativity

Consequences and tests

New tests

- ► MICROSCOPE: Universality of Free Fall

- ► The gravitational constant


Summary and outlook

Introduction

G is the most interesting of all constants

- lacktriangle Gravitation very weak, therefore G difficult to measure; G known with least precision
- lacktriangle measurement of G can also be interreted as search for Quantum Gravity
- ► G essential for Planck units; meaning?
- ▶ G=1 possible per definitionem; (Theory: $c=\hbar=G=1$) Consequences?

recommendation in

2002

Which constants are around?

Types of constants

- kinematical constants: \hbar , k_B , ... conversion quantities (energy \leftrightarrow frequency, energy \leftrightarrow temperature, ...)
- dynamical/geometrical constant: c (without interaction) conversion quantity (distance ↔ time)
- ightharpoonup dynamical constants: G, e, ... (interactions) coupling constants (G universal, e universal through charge quantization, ...)
- ▶ Particle parameters: particle masses, Weinberg angle, CKM angle, ...
- fundamental constants: c, \hbar , G, (e)
- natural constants: particle parameters, angles, ...,

Questions

- How are these constants defined?
- What is the meaning of these constants?

The velocity of light and Planck constant

Velocity of light c

- c is constant (equivalent to validity of SR)
- ▶ alternative: fixing c ($c = 299.792.458 \ m/s$) gives conversion factor between s and m.

The Planck constant \hbar

- lacktriangle Conversion factor between frequency and energy : $E=\hbar
 u$
- can be determined by means of Watt balance assuming validity of UFF

$$h = \frac{4}{K_J^2 R_K}$$

Conversion of units

- ightharpoonup da c konstant, kann man s in m umrechnen: x=ct
- lacktriangle da \hbar konstant, kann man s oder m in kg umrechnen $E=\hbar
 u$
- ▶ da G konstant, kann man eine Skala festlegen (z.B. Planck–Skala)
- \blacktriangleright \hbar reine Umrechengröße, da nicht in Dynamik involviert
- c dynamisch begründete (ohne Wechselwirkung Kausalität)
 Umrechengröße
- ► G eine Kopplungskonstante

man kann konsistent G=1 setzen

- kann damit Masse definieren: 1 kg ist die Masse von Kugeln, die im Abstand von 1 m die Kraft 1 N aufeinander ausüben
- \blacktriangleright dann Masse experimentell nur mit ca. 10^{-4} genau definierbar \Rightarrow Verschlechterung der Situation
- ▶ nicht praktikabel: jede neue Messung von *m* würde potentiell eine Neubewertung der Goldreserven nach sich ziehen ...

Planck units

Planck 1899: With the constants \hbar , c and G we can build time, length and mass

Planck-Zeit
$$t_{\rm Planck} = \sqrt{\frac{\hbar G}{c^5}} = 5.39106 \cdot 10^{-44} \, {\rm s}$$

$$l_{\rm Planck} = \sqrt{\frac{\hbar G}{c^3}} = 1.616199 \cdot 10^{-35} \, {\rm m}$$

$${\rm Planck-Masse} \qquad m_{\rm Planck} = \sqrt{\frac{\hbar c}{G}} = 2.1765 \cdot 10^{-8} \, {\rm kg}$$

m_{Planck} aus

Schwarzschild radius
$$\frac{Gm}{c^2} = \frac{\hbar}{mc}$$
 Compton wave length

- characterizes quantum gravity scale
- \blacktriangleright for two particles with mass $m_{\rm Planck}$ and charge e we have $F_{\rm grav}>F_{\rm el}$

there are other natural units before Planck ...

Stoney units

Stoney 1874: With the constants $e,\,c$ and G we can build time, length and mass

Stoney–Zeit
$$t_{\rm Stoney} = \sqrt{\frac{e^2 G}{4\pi\epsilon_0 c^6}} = 3\cdot 10^{-46}~{\rm s}$$
 Stoney–Länge
$$l_{\rm Stoney} = \sqrt{\frac{e^2 G}{4\pi\epsilon_0 c^4}} = 1\cdot 10^{-37}~{\rm m}$$
 Stoney–Masse
$$m_{\rm Stoney} = \sqrt{\frac{e^2}{4\pi\epsilon_0 G}} = 2\cdot 10^{-10}~{\rm kg}$$

- \blacktriangleright for two particles with mass $m_{\rm Stoney}$ and charge $e{:}$ $F_{\rm grav}=F_{\rm el}$ kann damit $m_{\rm Stoney}$ definieren
- characterizes scale of gravito-electromagnetic effects (Reissner-Nordström solution)

Stoney units

 $m_{
m Stoney}$ is the mass of a particle with charge e, so that the classical electron radius equals the Schwarzschild radius

class. electron radius
$$r_e = \frac{e^2}{4\pi\epsilon_0 mc^2} = \frac{Gm}{c^2} = \frac{1}{2}r_S \quad \text{Schwarzschild radius}$$

with class. electron radius \boldsymbol{r}_e from

rest energy
$$mc^2=\frac{e^2}{4\pi\epsilon_0 r_e}$$
 self energy

perhaps more meaningful natural systems: much more easy to realize

Measurements of G

- \blacktriangleright Weakness of gravity \Rightarrow measurement of G very difficult \Rightarrow large uncertainties
- Error sources (one needs large masses)
 - inhomogeneity of the masses
 - determination of the vcenter of mass.
- Traditional procedures
 - torsion balance
 - active motion
 - compensated motion
 - weighting of masses
 - pendulum
- new procedure: atomic interferometry

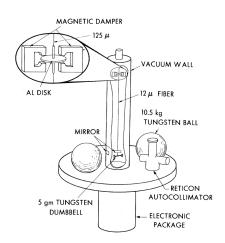
Measurements of G

TABLE XVII. Summary of the results of measurements of the Newtonian constant of gravitation G relevant to the 2010 adjustment.

Source	Identification ^a	Method	$\begin{array}{c} \text{Value} \\ (10^{-11} m^3 kg^{-1} s^{-2}) \end{array}$	Rel. stand. uncert. u _r
Luther and Towler (1982)	NIST-82	Fiber torsion balance, dynamic mode	6.672 48(43)	6.4×10^{-5}
Karagioz and Izmailov (1996)	TR&D-96	Fiber torsion balance, dynamic mode	6.672 9(5)	7.5×10^{-5}
Bagley and Luther (1997)	LANL-97	Fiber torsion balance, dynamic mode	6.673 98(70)	1.0×10^{-4}
Gundlach and Merkowitz (2000, 2002)	UWash-00	Fiber torsion balance, dynamic compensation	6.674 255(92)	1.4×10^{-5}
Quinn et al. (2001)	BIPM-01	Strip torsion balance, compensation mode, static deflection	6.675 59(27)	4.0×10^{-5}
Kleinevoß (2002); Kleinvoß et al. (2002)	UWup-02	Suspended body, displacement	6.674 22(98)	1.5×10^{-4}
Armstrong and Fitzgerald (2003)	MSL-03	Strip torsion balance, compensation mode	6.673 87(27)	4.0×10^{-5}
Hu, Guo, and Luo (2005)	HUST-05	Fiber torsion balance, dynamic mode	6.672 28(87)	1.3×10^{-4}
Schlamminger et al. (2006)	UZur-06	Stationary body, weight change	6.674 25(12)	1.9×10^{-5}
Luo et al. (2009); Tu et al. (2010)	HUST-09	Fiber torsion balance, dynamic mode	6.673 49(18)	2.7×10^{-5}
Parks and Faller (2010)	JILA-10	Suspended body, displacement	6.672 34(14)	2.1×10^{-5}

aNIST: National Institute of Standards and Technology, Gaithersburg, MD, USA; TR&D: Tribotech Research and Development Company, Moscow, Russian Federation; LANL: Los Alamos National Laboratory, Los Alamos, New Mexico, USA; UWash: University of Washington, Seattle, Washington, USA; BIPM: International Bureau of Weights and Measures, Sèvres, France; UWup: University of Wuppertal, Wuppertal, Germany; MSL: Measurement Standards Laboratory, Lower Hutt, New Zealand; HUST: Huazhong University of Science and Technology, Wuhan, PRC; UZur: University of Zurich, Zurich, Switzerland; JILA: a joint institute of the University of Colorado and NIST, Boulder, Colorado, USA.

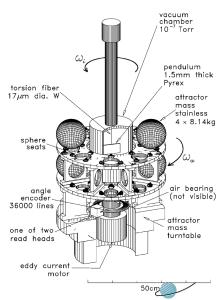
measurement always means


- measurement of G
- verification of $1/r^2$ –law

Torsion balance: active motion

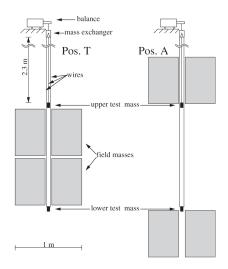
Luther & Towler, PRL 1982

- Measurement principle: gravitating masses rotate around test masses, frequency of torsion pendlum is modified through presence of gravitating masses, choice of a particular frequency suppresses noises
- Error sources:
 - center of mass of gravitating masses
 - position and geometry of small masses
 - inertial moments of the mirror
 - non-linear behavior of torsion pendulum



Torsion balance: compensated motion

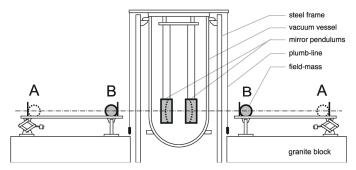
Gundlach & Merkowitz, PRL 2000


- Messprinzip: Torsionpendel rotiert ⇒ kann Frequenz bestimmen, was Umwelteinflüsse reduziert, Feedback reguliert Rotation so, dass Torsionsfaden nicht verdrillt (Vermeidung des Kuroda-Effekts), Messung von G aus Winkelbeschleunigung des **Torsionspendels**
- dominante Fehlerquellen:
 - Position der gravitierende Massen
 - Pendelgemetrie
 - Temperaturschwankungen

Measuring the weight

Schlamminger, Holzschuh, Kündig, Nolting, Pixley, Schurr & Straumann, PRD 2006

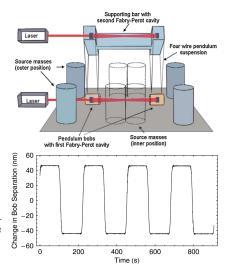
- measurement principle: measurement of the weight for different positions of the gravitating masses by means of a balance
- ▶ gravitating masses: Mercury in a container ⇒ very homogeneous mass
- error source: determination of the mass



Pendulum

Kleinevoss, thesis 2002, Mayer et al, GRG 2012

- Measurement principle: Fabry-Perot gravimeter: Abstandsmessung zwischen Pendel mittels Mikrowellenresonator, Abstandsänderung ergibt Frequenzänderung
- Error sources: positioning, homogeneity of graviting masses

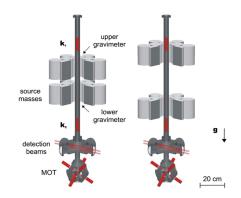

Pendulum

Parks & Faller, PRL 2010

- Measurement principle: distance between pendula measured by means of a Fabry-Perot interferometer
- ▶ Test masses positioned at saddle point of the gravitating masses ⇒ insensitive w.r.t. uncertainty of positiong
- most precise measurement of G

$$G = (6.67234 {\pm} 0.00014) {\cdot} 10^{-11} \frac{m^3}{kg^2 \, s}$$

$$\frac{\Delta G}{G} = 2.1 \cdot 10^{-5}$$


Atom interferometry

Lamporesi, Bertoldi, Cacciapuoti, Prevedelli & Tino, PRL 2008

- Measurement principle: measuremet of the gravitational acceleration for different positions of the gravitating masses
- Measurement: phase shift

$$\delta\phi = k \cdot g \ T^2$$

- uncertainty approx. 1 order of magnitude larger than Parks & Faller
- uncertainty mainly through uncertainty of the position of the gravitating masses

Outline

General Relativity

- The geometrical structure
- ► The gravitational field equations

Consequences and tests

- ► Weak field consequences
- ▶ The strong gravity regime
- ► Further consequences

Big open questions

New tests

- ► MICROSCOPE: Universality of Free Fall
- ▶ Quantum tests: QUANTUS, PRIMUS, MAIUS, STE-QUEST, MAQRO, ...
- Galileo: Gravitational redshift
- ► The gravitational constant

Summary and outlook

Summary and outlook

Astrophysical tests

- strong gravity regime
- ▶ limits of our experence: Black Holes
- test of matter models (neutron stars)
- high energy particles
- gravitational waves

Laboratory tests

- tests of fundamental principles (UFF, UGR, LLI)
- search for quantum gravity effects

Summary and outlook

Open issues

- Dark Matter
- Dark Energy
- ▶ Black Holes and neutron stars
- Quantum Gravity

New experimental devices

- squeezing
- large quantum systems
- entangled systems
- **...**

Thank you for your attention

Thanks to

- Hansjörg Dittus
- Eva Hackmann
- Sven Herrmann
- Jutta Kunz
- Bahram Mashhoon
- Fritz Merkle
- Jürgen Müller
- Volker Perlick
- **Frnst Rasel**
- Piet Scmidt

- **DFG Research Training Group** "Models of Gravity"
- DEG Collaborative Research Center "Relativistic Geodesy" geo-Q
- German Research Foundation DFG
- German Space Agency DLR
- Center of Excellence QUEST
- German Israeli Foundation
- IRAP-PhD

