

HERA crown jewels

Inclusive cross sections and parton distributions

arXiv.org > hep-ex > arXiv:1506.06042

High Energy Physics – Experiment

Combination of Measurements of Inclusive Deep Inelastic $e^{\pm}p$ Scattering Cross Sections and QCD Analysis of HERA Data

H1, ZEUS Collaborations (Submitted on 19 Jun 2015)

K. Wichmann on behalf of H1 and ZEUS Collaborations

HERA accelerator

Two colliding experiments

Deep Inelastic Scattering @ HERA

$$Q^{2} = -q^{2} = -(k-k')^{2}$$

$$x = \frac{Q^2}{2\mathbf{p} \cdot q} \qquad y = \frac{p \cdot q}{p \cdot k}$$

Now we combine these measurements

Klimek, 24.04.14, 1r: 23.06.15, HERA crown jewels

DESY

 $s = (p+k)^2 \qquad Q^2 = x_{\scriptscriptstyle B_j} y \cdot s$

Inclusive DIS data samples

- 41 final data sets with HERA inclusive measurements
 - NCep and CCep
 - 21 HERA I data samples
 - 20 HERA II data samples, including: •
 - 8 inclusive HERA II E_p = 920 GeV
 - 4 high y data E_p = 920 GeV
 - 4 high y data $E_p = 575 \text{ GeV}$
 - 4 high y data E_p = 460 GeV
- Data 1994-2007: over 10 years of data taking!
- 22 papers between 1997-2014: almost 20 years of data analysis!

Total of 2927 data points combined to 1307

First F_2 measurements @ HERA: 1993 ~20 nb⁻¹ \rightarrow 1 fb⁻¹

The F_2 structure function increases rapidly as x decreases. it is exciting to see F_2 rise at small x.

Full publication list

F. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 63, 625 (2009), [arXiv:0904.0929].

- F. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 64, 562 (2009), [arXiv:0904.3513].
- C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C 13, 609 (2000), [hep-ex/9908059].
- C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C 19, 269 (2001), [hep-ex/0012052].
- C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C 30, 1 (2003), [hep-ex/0304003].
- F. Aaron et al. [H1 Collaboration], JHEP 1209, 061 (2012), [arXiv:1206.7007].
- V. Andreev et al. [H1 Collaboration], Eur. Phys. J. C 73, 2814 (2013), [arXiv:1312.4821].
- F. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 71, 1579 (2011), [arXiv:1012.4355].
- J. Breitweg et al. [ZEUS Collaboration], Phys. Lett. B 407, 432 (1997), [hep-ex/9707025].
- J. Breitweg et al. [ZEUS Collaboration], Phys. Lett. B 487, 53 (2000), [hep-ex/0005018].
- J. Breitweg et al. [ZEUS Collaboration], Eur. Phys. J. C 7, 609 (1999), [hep-ex/9809005].
- S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 21, 443 (2001), [hep-ex/0105090].
- J. Breitweg *et al.* [ZEUS Collaboration], Eur. Phys. J. C **12**, 411 (2000), [Erratum-ibid. C **27**, 305 (2003), [hep-ex/9907010].

- S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 28, 175 (2003), [hep-ex/0208040].
- S. Chekanov *et al.* [ZEUS Collaboration], Phys. Lett. B **539**, 197 (2002), [Erratum-ibid. B **552**, 308 (2003)], [hep-ex/0205091].
- S. Chekanov et al. [ZEUS Collaboration], Phys. Rev. D 70, 052001 (2004), [hep-ex/0401003].
- S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 32, 1 (2003), [hep-ex/0307043].
- S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 62, 625 (2009), [arXiv:0901.2385].
- S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 61, 223 (2009), [arXiv:0812.4620].
- H. Abramowicz et al. [ZEUS Collaboration], Phys. Rev. D 87, 052014 (2013), [arXiv:1208.6138].
- H. Abramowicz *et al.* [ZEUS Collaboration], Eur. Phys. J. C 70, 945 (2010), [arXiv:1008.3493].
- H. Abramowicz et al. [ZEUS Collaboration], Phys. Rev. D 90, 072002 (2014), [arXiv:1404.6376].

DESY-15-039 arXive: 1506.06042

10⁵

10⁴

10³

10²

10

10⁻¹

 10^{-2}

10⁻⁷

 Q^2/GeV^2

Q^2-X_{Bi} common grids

X_{Bj}

<u>Two separate grids</u>

 \bigcirc inclusive grid, for E_p = 920 GeV and E_p = 820 GeV data sets

• fine-
$$x_{B_j}$$
 grid, for E_p = 575 GeV
and E_p = 460 GeV data sets

- 1307 grid points
 - 0.045 < Q² < 50000 GeV²
 - 6×10⁻⁰⁷ < ×_{Bi} < 0.65

 \mathbf{O}

Swimming procedure

• Swimming done iteratively using our own data

Swimming factors are usually at level of few %

Averaging procedure

• Combination done using HERAverager: wiki-zeuthen.desy.de/HERAverager

$$\chi^{2}_{\exp,ds}(\boldsymbol{m},\boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma^{i,ds}_{j} m^{i} b_{j} - \mu^{i,ds}\right]^{2}}{\delta^{2}_{i,ds,\text{stat}} \mu^{i,ds} \left(m^{i} - \sum_{j} \gamma^{i,ds}_{j} m^{i} b_{j}\right) + \left(\delta_{i,ds,\text{uncor}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}$$

- 162 correlated systematic sources taken into account
- Output
 - 7 data samples for e[±]p, NC and CC, 3 CMEs
 - Statistical and uncorrelated systematic uncertainties
 - 162 correlated statistical uncertainties
 - 7 procedural uncertainties calculated → see additional material

Good data consistency: $\chi^2/dof = 1687/1620$

Improved precision

- Largest and most accurate data sample is for the NC e⁺p process
- The combined data accuracy reaches \sim 1%
- Largest improvement for NC e⁻p 10 times more luminosity
- Consistent with HERA-I + improved uncertainties

Improving previous results

- increases statistical significance
- reduces systematic uncertainties via cross calibration techniques

Great gain in precision

jewels

New kinematic ranges explored

- Kinematic range extended for existing data samples
- Low energies added: CME = 225
 GeV and 251 GeV

Low Q² combined data

- Combined inclusive cross sections for low Q²
- Available for two CMEs
 - 300 GeV
 - 318 GeV
- Interesting for
 - dipole/saturation models
 - studying higher twists

MORTAL KOMBAT HERA LEGACY

Electroweak unification

Text book plots of fundamental properties of particle interactions

As expected: low-x rise of F₂

$xF_{3}^{\gamma Z}$ from combined data

- xF_3^{gZ} from subtracting the NC e^+p from the NC e^-p cross sections
- Weak Q^2 dependence \rightarrow translated to Q^2 = 1000 GeV² and averaged

 $0.016 < x_{Bj} < 0.725$ HERAPDF2.0 :1.165^{+0.042}_{-0.053} $0 < x_{Bj} < 1$ { HERAPDF2.0 :1.588^{+0.078}_{-0.100} QPM: 5/3

Alexander von Humboldt

Data :1.314 \pm 0.057(stat) \pm 0.057(syst) Data :1.790 \pm 0.078(stat) \pm 0.078(syst)

CC: helicity effects

Proton structure

- PDFs used in interactions with proton: LHC, Tevatron, HERA
- Precision of many measurements often limited by PDF uncertainty

132

~

Neutral Current

Proton structure functions

$$F_2 = x \sum e_q^2 [q(x) + \bar{q}(x)]$$

Sensitive to quarks

$$xF_3 = x\sum 2e_q a_q[q(x) - ar q(x)]$$

Sensitive to valence distributions

 $F_L \sim \alpha_s \times g$

- Sensitive to gluon
- Gluon also from scaling violation and charm+jet data

Gluon meets F_L

- H1 performed direct extraction of gluon density from $F_{\rm L}$ measurement @NLO

Gluon approximated from $F_{\rm L}$ agrees with gluon determined from scaling violations

DESY 23.06.15,

Global analysis of parton distributions

Goal: determination of the *input distributions* (for light quarks and gluons): Method: Parametrizations $xf(x, Q_0^2) = Nx^a(1-x)^b$ function(x) and usual *statistical estimation* (fits):

$$\chi^{2}(p) = \sum_{i=1}^{N} \left(\frac{\operatorname{data}(i) - \operatorname{theory}(i, p)}{\operatorname{error}(i)} \right)^{2}$$

Position of minimum gives the value and curvature gives the error (region within a certain "tolerance" $\Delta \chi^2 = 1$) (Monte Carlo methods can also be used)

Usually the chi-square definition is more sophisticated, experimental correlations are also treated, etc.

• Parton densities parametrised @ $Q^2 = 1.9 \text{ GeV}^2$

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$

$$xg(x), xu_{v}(x), xd_{v}(x), x\bar{U}(x), x\bar{D}(x)$$

- Evolution using DGLAP equations
- •14 parameters determined in paramerisation scan
- Heavy quarks from Roberts-Thorne Variable Flavor Number Scheme

QCD fits performed using HERAFitter package <u>www.herafitter.org</u>

Alexander von Humboldt

HERAPDF2.0

• NLO fit for $Q^2_{min} = 3.5 \text{ GeV}^2$

 χ^2 /dof = 1357/1131

 Additional fit performed with Q²_{min} = 10 GeV²

 χ^2 /dof = 1156/1002

Situation somewhat improved

• Similar results for NNLO

Reasonable description of NC, CC and low energy data for NLO and NNLO

NLO & NNLO parton densities

HERAPDF2.0 extracted

with experimental, model and parametrization uncertainties

Color decomposition of uncertainties

Parametrisation uncertainties - largest deviation

🔶 Model uncertainties

Alexander von Humboldt

- all variations added in quadrature

Experimental uncertainties:

- Hessian method
- Conventional $\Delta \chi^2$ = 1 => 68% CL

Variation		Standard Value	Lower Limit	Upper Limit							
	$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0							
	Q_{\min}^2 [GeV ²] HiQ2	10.0	7.5	12.5							
	$M_c(\rm NLO)$ [GeV]	1.47	1.41	1.53							
	M_c (NNLO) [GeV]	1.43	1.37	1.49							
	M_b [GeV]	4.5	4.25	4.75							
	f_s	0.4	0.3	0.5							
	μ_{f_0} [GeV]	1.9	1.6	2.2							
	Adding D and F parameters to each PDF										

HERAPDF2.0AG LO

- Parton densities @LO are essential for proper simulation of parton showers and underlying event properties in LO+PS Monte Carlo event generators
- Includes experimental uncertainties

Comparisons are odious

Miguel de Cervantes, "Don Quixote"

Parton densities @ NLO and NNLO

Alexander von Humboldt Stiftung/Foundation Theory predictions @ NLO and NNLO

H1 and ZEUS

World of PDFs

 Difference for valence quarks

HERAPDF - the only group to get d valence from proton in CCe+p and not from neutron by assuming that u in neutron = d in proton

Various gluon
 behaviours at low x

Q²_{min}-cut studies

- Dependence of chi2/dof on Q²_{min} cut
 - Drop of chi2 with Q²_{min} cut
 - Saturation around 10 GeV²
- Significant improvement of NLO compared to LO
- Marginal to no improvement of NNLO compared to NLO
- NLO behavior similar in HERAI and HERAI+II

HERAPDF2.0HiQ2 variant issued

HERAPDF2.0HiQ2

Larger uncertainty for HERAPDF2.0HiQ2 gluon at low x.

PDFs become very alike at higher scales.

Adding more HERA data

Charm and jet data from HERA

Including HERA jets in QCD global fits

- HERA combined charm data
- 7 H1 and ZEUS jet samples
 - Inclusive jets
 - Dijets
 - Trijets
 - Some are normalised cross sections \rightarrow best α_s sensitivity
- Validated choice of $\alpha_s = 0.118$

HERAPDF2.0Jets $\alpha_s = 0.118$

HERAPDF2.0Jets α_s free

$\underline{\alpha_{s}}$ determined from QCD fit

 $\alpha_s(M_Z^2) = 0.1183 \pm 0.0009(\text{exp})$

Experimental uncertainty below 1%

 ± 0.0005 (model/parameterisation)

 ± 0.0012 (hadronisation)

 $^{+0.0037}_{-0.0030}$ (scale)

Uncertainty dominated by theory NNLO ep jet calculations needed

HERAPDF2.0Jets

HERA Summary

- Combined HERA data set provides ultimate sample for inclusive neutral and charged current cross section studies in wide kinematic rang.
 - Low Q² data -> additional checks of QCD calculations
- Plethora of beautiful physics seen in inclusive DIS measurements

HERA legacy of almost 25 years of activity

 HERAPDF2.0 extracted solely from HERA final data

PDF uncertainties important

<u>Uncertainties of many variables often dominated by PDF uncertainties</u>

- 2014 CMS combined best-fit signal strength relative to SM
 1.00 +/- 0.09 (stat) ^{+0.08}_{-0.07} (theo) +/- 0.07 (syst)
- PDFs necessary for background estimate BSM searches and SM tests
- Important for global electroweak fit parameters like m_w

Global Situation in global QCD fits

Alexander von Humboldt

- PDF uncertainties still large
- Especially at low and high x
- New data needed
 → LHC data used

Data for parton distributions: preLHC

Now: from predicting LHC measurements to using them to constraining parton distributions

Additional slides

Data Set		xBi Grid		Q ² [GeV	²] Grid	L	e ⁺ /e ⁻	\sqrt{s}	$x_{\rm Bi},Q^2$ from
		from	to	from	to	pb ⁻¹		GeV	equations
HERA I $E_p = 820 \text{ GeV}$	and $E_p =$	920 GeV data	sets						
H1 svx-mb	95-00	0.000005	0.02	0.2	12	2.1	e ⁺ p	301,319	13,17,18
H1 low Q^2	96-00	0.0002	0.1	12	150	22	e ⁺ p	301, 319	13,17,18
H1 NC	94-97	0.0032	0.65	150	30000	35.6	e ⁺ p	301	19
H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301	14
H1 NC	98-99	0.0032	0.65	150	30000	16.4	ep	319	19
H1 CC	98-99	0.013	0.40	300	15000	16.4	e p	319	14
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	ep	319	13
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e ⁺ p	319	19
H1 CC	99-00	0.013	0.40	300	15000	65.2	e ⁺ p	319	14
ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e ⁺ p	300	13
ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	13, 19
ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	13
ZEUS NC	96-97	0.00006	0.65	2.7	30000	30.0	e ⁺ p	300	21
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e ⁺ p	300	14
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e ⁻ p	318	20
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	ep	318	14
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e ⁺ p	318	20
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e ⁺ p	318	14
HERA II $E_p = 920 \text{ GeV}$	data sets								I
H1 NC 1.5p	03-07	0.0008	0.65	60	30000	182	e^+p	319	13, 19
H1 CC 1.5p	03-07	0.008	0.40	300	15000	182	e ⁺ p	319	14
H1 NC 1.5p	03-07	0.0008	0.65	60	50000	151.7	ep	319	13, 19
H1 CC 1.5p	03-07	0.008	0.40	300	30000	151.7	en	319	14
H1 NC med Q2 *9.5	03-07	0.0000986	0.005	8.5	90	97.6	e ⁺ n	319	13
H1 NC low 02 *9.5	03-07	0.000029	0.00032	2.5	12	5.9	e ⁺ p	319	13
ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e ⁺ p	318	13,14,20
ZEUS CC 1.5p	06-07	0.0078	0.42	280	30000	132	e ⁺ p	318	14
ZEUS NC 1.5	05-06	0.005	0.65	200	30000	169.9	en	318	20
ZEUS CC 15	04-06	0.015	0.65	280	30000	175	en	318	14
ZEUS NC nominal *9	06-07	0.000092	0.008343	7	110	44.5	et p	318	13
ZEUS NC satellite *	06-07	0.000071	0.008343	5	110	44.5	e ⁺ n	318	13
HERA II $E_n = 575 \text{ GeV}$	data sets	0.000071	01000010			11.0	εp	510	
H1 NC high Q^2	07	0.00065	0.65	35	800	5.4	e ⁺ n	252	13, 19
H1 NC low O^2	07	0.0000279	0.0148	1.5	90	5.9	e ⁺ n	252	13
ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e ⁺ n	251	13
ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	etn	251	13
HERA II $E_{\pi} = 460 \text{GeV}$	data sets	0.000120	0.010019				- p	201	
H1 NC high Q^2	07	0.00081	0.65	35	800	11.8	e ⁺ n	225	13, 10
H1 NC low Q^2	07	0.0000348	0.0148	1.5	90	12.2	e ⁺ n	225	13
ZEUS NC nominal	07	0.000184	0.016686	7	110	13.0	et n	225	13
ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	et n	225	13
Labor no satemite	07	0.000145	0.010000	5	110	13.9	ep	225	1.5

DESY

53

https://www.herafitter.org

Averaging results

• Good data consistency: $\chi^2/dof = 1687/1620$

Procedural uncertainties

• Combination done using HERAverager: wiki-zeuthen.desy.de/HERAverager

$$\chi^2_{\exp,ds}(\boldsymbol{m},\boldsymbol{b}) = \sum_i \frac{\left[m^i - \sum_j \gamma^{i,ds}_j m^i b_j - \mu^{i,ds}\right]^2}{\delta^2_{i,ds,\text{stat}} \mu^{i,ds} \left(m^i - \sum_j \gamma^{i,ds}_j m^i b_j\right) + \left(\delta_{i,ds,\text{uncor}} m^i\right)^2} + \sum_j b_j^2$$

- 162 correlated systematic sources taken into account
 - treated as multiplicative

Alexander von Humboldt Stiftung/Foundation Estimation of beauty and charm mass parameters

<u></u>

 $\rightarrow M_{c}/M_{b}$ determined from inclusive data + charm/beauty data

Method comes from the HERA charm combination (Eur. Phys. J. C73 (2013) 2311)

HERAPDF1.0 vs HERAPDF2.0

- Valence distributions are more peaked at HERAPDF2.0 ← new data
 High x sea is softer whereas gluon is harder at HERAPDF2.0
- Smaller uncertainties at high x.

HERAPDF1.5 vs HERAPDF2.0

- IO param → 14 param
- Low x gluon uncertainty smaller for HERAPDF2.0

Looking at F_L order

61